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Abstract 
Systematic closed loop geometric errors in CNC machines have three translational and three rotational 
components for each machine slide. These components can be conveniently approximated by 
multidimensional polynomials that are functions of the CNC machine axes and have a particular structure. Their 
identification allows to compute corrections that make the CNC machine more accurate. Since measurements 
are in general expensive and time consuming it is important to keep their number as low as possible. In this 
paper optimal sampling properties for some classes of multidimensional polynomials relevant to the CNC 
machine closed loop error correction are presented. The optimality criteria considered in this paper are the 
reduction of the estimate uncertainties and of the worst case prediction error that can be committed when using 
the estimated functions. All results are derived in the case in which measurement errors and uncertainties are 
characterized by tolerances. 
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1 INTRODUCTION 
The accuracy of CNC machines is affected by several 
factors that include geometric errors, dynamic effects of the 
forces applied in the milling process, thermal deformations 
etc. [1], [2], [3] Such errors are usually corrected 
measuring, for each axis of the CNC machine, the six 
elementary error components (three linear errors and three 
rotational ones) that can be associated to the movements 
of any rigid body. The hardware of the machine is then 
corrected accordingly, or the corrections are embedded in 
the software of the controller. A recent overview on 
geometric error identification and compensation can be 
found in [4]. In [5] a different approach is outlined. It 
consists in focusing on the total closed loop volumetric 
error that accounts for the position and orientation error of 
the tool with respect to the work piece within the working 
space of the machine. It has, in general, three linear error 
components of the position of the cutting tool (dx, dy, dz) 
and three angular components of its orientation (di, dj, dk). 
Total error components are functions of the n joint 
coordinates of the CNC machine, since they are the result 
of the combined effect of the elementary error components 
associated with the movement of each CNC machine axis. 
In [5] the general framework for deriving such relations is 
presented and the specific functions relating total closed 
loop volumetric errors to the elementary error components 
are derived for one of the most common structure of five 
axes CNC machine. 
To provide a mathematical description for the errors, which 
depend on the imprecision of the CNC machine production 
process and do not have any particular model structure, it 
is usually assumed that elementary error components are 
adequately represented by monodimensional polynomials 
of the relevant CNC joint. It follows, therefore, that total 
closed loop volumetric errors are n-dimensional 
polynomials which are functions of the n joint coordinates 
of the CNC machine and deserve a particular structure. 
Specifically the angular error components are the sum of n 
monodimensional polynomials each one of which is the 
function of a different CNC joint coordinate. The degree of 
such polynomials is the same as the degree of the 
polynomials used to describe the elementary error 

components. The position error components of total closed 
loop volumetric error either have the same structure as the 
angular components, or they have also additional extra 
terms which, however, are the result of the multiplication of 
a monodimensional polynomial in one of the joint 
coordinates by a first degree monomial in one of the joint 
coordinates. All the monomial of such polynomial can 
therefore be function of at most two joint coordinates one 
of which must be at power 1. 
In order to compensate and correct the CNC machine it is 
necessary to identify the total closed loop volumetric errors 
that needs therefore to be measured in convenient 
locations within the workspace of the machine. There are 
different possible approaches for the measurement of such 
errors which make use of suitable equipment like the laser 
tracker or the one which is the base for the procedure 
patented by Jae, Hee, and Nam [6]. Alternatively total 
volumetric errors can be derived measuring the differences 
between nominal and actual values of the dimensions in a 
convenient artifact which has been milled with the machine 
to be calibrated. This last approach is described in [7] and 
[8]. 
In any case measurements are in general expensive in 
terms of time and equipment and it is therefore advisable 
to reduce their number possibly keeping it to a minimum. 
On the other hand accurate identification is needed to 
ensure good error correction. Since, however the 
“goodness” of the identification is related to the number 
and the location of the available measurements, an optimal 
experiment design aimed at ensuring the best possible 
error identification should be performed. This mainly 
consists in an optimal sampling selection that ensures the 
largest reduction of the identification error with a given 
number of measurements. 
In this paper the problem of optimal sampling selection is 
considered for multidimensional polynomials of the 
particular structures that total closed loop error 
components in CNC machines can assume.  
 



2 OPTIMAL SAMPLING SELECTION 
Optimal experiment design and optimal sampling selection 
have been studied in different fields and a general 
overview of the subject is by far out of the scope of this 
paper. Here attention is focused only on optimal sampling 
design for polynomials and some results that can be found 
in literature for monodimensional polynomials are shortly 
revised as introductory background.  

2.1 Problem statement 
Let ),( θtP  be a polynomial represented in the 
Vandermonde base so that 
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The parameter vector ],,[ 1210 −= pθθθθθ K  needs to be 
identified using suitable measurements collected according 
to a sampling schedule which is a set },,{ 321 mmT ττττ K=  
of m sampling times that belong to a given interval ],[ ba tt  
so that, without loss in generality, 

bma tt ≤≤≤≤≤ ττττ 321 K . Indeed the parameter vector 
can be identified only if pm ≥ and at least m  
measurements are collected at different times. In such 
condition, if measurements were error free, the parameters 
could be exactly derived. Since however there is always a 
measurement error )(te , only perturbed measurements 

)(),()( tetPty += θ  (2) 

can be collected. Therefore parameter estimates can be 
derived only with some degree of uncertainty. The aim of 
optimal experiment design is to find out the best choice of 
sampling times mii ,,1, K=τ  that ensures some optimality 
of the derived parameter estimates.  
To solve the problem it is necessary to define how the 
measurement error )(te  is characterized and to state the 
optimality criterion used to evaluate the goodness of the 
estimates. Here results are reported for the case in which a 
set membership description is provided for the 
measurement error )(te  that is therefore assumed to 
belong to a given set )(teΩ . With this assumption no 
statistical characterization of error )(te  is needed, although 
it not excluded that the error could be also statistically 
described. In particular the case of unknown but bounded 
errors is considered here, in which 

Ete ≤)( . (3) 

Note that this environment fits perfectly in the framework in 
which CNC machines are operated, since relation (3) 
mainly assumes that measurements are derived with a 
given tolerance E .  
In such condition when a vector of m measurements 

)]()(),(),[y( 321 myyyY ττττ K=  is collected at the mT  
sampling times the following relation holds 

eTAY m += θ)(  (4) 

in which mRY ∈ , pR∈θ , and mRe∈  is the (unknown) 
vector of the measurement error realization that belongs to 
the measurement error set 
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)( mTA  is the Vandermonde matrix  
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The size of the parameter feasible set  
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which is the set of all parameters which are consistent with 
the measurements, the polynomial model and the 
measurement error characterization describes the 
uncertainty on the parameter estimates. Any point in 

)( mTDθ could have generated the data and could therefore 
be used as parameter estimate, although the most 
convenient choice is to use its center oθ  defined as  
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The set )( mTDθ  depends on the sampling schedule mT  as 
well as on the unknown error realization e . It is however 
possible to compute the worst case parameter feasible set 
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whose size is equal to the largest size that the parameter 
feasible set )( mTDθ  can have in connection with the worst 

error realization. To compute )(~
mTDθ  no actual 

measurements are needed, but only the sampling schedule 
mT  is required. 

For what concerns the optimality criterion to be used in the 
selection of the optimal sampling design two choices are 
mainly possible: 
● When the focus is on parameter identification, the 

typical choice is to minimize some norm of the 
parameter feasible set )( mTDθ . 2l  and ∞l  norms of 
the parameter uncertainty are the common choices. 
Note once again that ∞l  norm mainly consists in 
characterizing parameter uncertainties with tolerances 
while minimizing the 2l  norm is referred to as D-
optimization. Here the ∞l  norm is used. 

● When the focus is on the use of the estimated 
polynomial to predict the real one, the typical choice is 
to minimize some norm of the prediction error 

)( mpred TE  that is the difference between the 
estimated and the real (unknown) polynomial. Also in 
this case the ∞l  norm of the prediction error, that 
represents the maximum prediction error over the 
interval ],[ ba tt , is a common choice. Such error is 
then given by 
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Since )( mTDθ  is a function of the measurement error 
realization, consequently also its norm, that accounts for 
estimates uncertainties, and the prediction error, as 
defined in (9), depend on the error realization. To get rid of 
this and in order to provide guaranteed results it is 
common practice to look for the worst case estimation 
uncertainties and worst case prediction error that are the 
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maximal values that uncertainties and error can assume for 
any possible measurement error realization. This is 
achieved considering the norm of set )(~

mTDθ  instead of 
the one of set )( mTDθ  and similarly considering the worst 

case prediction error )(~
mpred TE  defined as 
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2.2 Worst case estimation uncertainty in ∞l  norm 

In the following some important properties of worst case 
estimation uncertainties are reported omitting technical 
details for the general case of linear in the parameter 
functions and for the particular case of monodimensional 
polynomials reported in relation (1). For a deeper 
understanding and more technicalities the interested 
reader should refer to papers [9], [10], [11] and the 
references therein.  
● Worst case estimation uncertainties affecting 

parameter estimates can be computed for any given 
sampling schedule },,{ 321 mmT ττττ K= . Worst case 
estimation analysis can be performed without 
collecting any real measurement. 

● Let )( mo TT  be the set of minimum cardinality among 
all the possible subsets of mT  that ensure the same 
worst case estimation uncertainties that are obtained 
using the set mT . )( mo TT  is referred to as the optimal 
sampling set. Its optimality consists in the fact that it is 
the set that ensures the same worst case estimation 
uncertainty of mT  with the minimum number of 
measurements.  

● The cardinality of )( mo TT  is always bounded between 

p  and 2p  (the number of parameters and its square). 

● In general )( mo TT  is not unique. 

● The set )( mo TT  for linear in the parameters functions 
can be numerically derived solving p linear 
programming problems as described in [8]. Remark, 
however, that such numerical procedure could lead to 
a suboptimal sampling set )( mso TT  whose cardinality 

is still between p  and ,2p but it results to be 
).()( momso TTTT ⊃ Furthermore the numerical 

procedure does not allow to recognize possible 
multiple optimal sampling sets. 

● For monodimensional polynomials represented in the 
Vandermonde base as in relation (1) the optimal 
sampling schedule is unique and consists of only p  
elements.  

● Define ∞T  as the set of infinite cardinality consisting of 
all sampling times in the interval ].,[ ba tt Its 
corresponding optimal sampling schedule )( ∞TTo  can 
be analytically derived and is constituted by the  points 
in which the 1st kind Chebyshev polynomial of degree 
p-1 associated with the interval ],[ ba tt  achieves its 
minimal and maximal values. Such sampling schedule 
will be referred to as the optimal estimation error 
sampling schedule. 

● If the parameter estimation is performed using 
measurements collected according to a sampling 
schedule pT  of cardinality p, then the actual 

estimation uncertainties are equal to the worst case 
estimation uncertainties.  

Remark that worst case uncertainty is computed a priori 
assuming the worst possible error realization and dealing 
with set ).(~

mTDθ Once actual measurements are collected 
it is possible to compute the actual estimate uncertainties 
that affect the parameter estimates and depend on the 
error realization operating on set )( mTDθ . Hereafter some 
properties of actual estimate uncertainties are reported 
together with their relation with the worst case parameter 
uncertainties. 
● If the parameter estimation is performed using 

measurements collected according to a sampling 
schedule mT  of cardinality ,pm > in general the actual 
estimation uncertainties can be smaller than the worst 
case estimation uncertainties.  

● Let mT  (or ∞T ) be the sampling schedule collecting all 
possible measurements, let mmo TTT ⊂)(  and say r the 
cardinality of )( mo TT . If more than r measurements can 
be actually collected, under mild statistical assumption 
on the measurement error distribution, the best choice 
consists in measuring several time the function in the 
same sampling times of the optimal sampling )( mo TT  
[12]. 

2.3 Worst case prediction error 
For what concerns the worst case prediction error 

)(~
mpred TE , the case that has been extensively studied is 

the one of monodimensional polynomials of degree p-1, 
when only p sampling points in the finite interval ],[ ba tt  
have to be used. According to a conjecture by Bernstein 
[13] which has been proved by Kilgore [14] and De Boor – 
Pinkus [15] the minimum worst case prediction error 
function is piecewise polynomial that has one local 
maximum on each interval ],[ 1+ii tt  (with 

1,1,1 −=>+ pitt ii K ). The sampling schedule that 
minimizes the worst case prediction error over the interval 

],[ ba tt  is the one for which the local maxima on each 
interval ],[ 1+ii tt  are equal. Unfortunately no closed form is 
available for such schedule which can be only numerically 
derived. However the schedule is very well approximated 
by the roots of the 1st kind Chebyshev polynomial of degree 
p translated on the interval ],[ ba tt . Such sampling 
schedule will be referred to as the optimal prediction error 
sampling schedule. 
Indeed when a sampling schedule mT  is assigned, it is 
quite easy to derive numerically the worst case prediction 
error over the interval ],[ ba tt .  

Table 1: Worst case prediciton errors with different 
sampling schemes for polynomial of different degree 

 Polynomial Degree 
 2 3 4 5 6 
Opt. prediction 
error sampling 1.25 1.43 1.57 1.68 1.78 

Opt. estimation 
sampling 1.25 1.67 1.80 1.99 2.08 

 

For example and for future reference in Table 1 are 
reported the worst case prediction errors that can be 
achieved using the optimal prediction error sampling 
schedule as well as the optimal estimation error sampling 



schedule. Results are for polynomials of different degree 
and are obtained normalizing the error bound 1=E . 
The case in which m measurement points over the interval 

],[ ba tt  can be used, to the best of our knowledge, has not 
been studied when pm > . It is however easy to state that 
also in this case the minimum worst case prediction error 
function is piecewise polynomial and to conjecture that it 
has a local maximum on each interval ],[ 1+ii tt  (with 

mitt ii ,,1,1 K=>+ ). Also in this case holds the 
conjecture that the sampling schedule that minimizes the 
worst case prediction error over the interval ],[ ba tt  is the 
one for which the local maxima on each interval ],[ 1+ii tt  
are equal. In this case the optimal schedule has to be 
numerically derived. The conjecture that the schedule 
could be well approximated by the roots of the 1st kind 
Chebyshev polynomial of degree m translated on the 
interval ],[ ba tt  has been proven false. In Table 2 the worst 
case prediction error which results when using a uniform 
schedule, the schedule provided by the roots of the 1st kind 
Chebyshev polynomials, and numerically evaluated almost 
optimal schedules is reported for different polynomial 
degrees and for different number of measurements in 

],[ ba tt . Numerical results are computed normalizing to one 
the bound on the error so that 1=E . It can be noted that 
the schedule provided by the roots of the 1st kind 
Chebyshev polynomials is not optimal when the number of 
measurements is larger than the degree of the identified 
polynomial. Moreover its corresponding worst case 
prediction error is not monotonically decreasing for 
increasing number of sampling points in ],[ ba tt . 

 
3 OPTIMAL SAMPLING SELECTION FOR 

MULTIDIMENSIONAL POLYNOMIALS THAT ARE 
THE SUM OF MONODIMENSIONAL ONES 

Very few results are available for the optimal sampling 
selection of multidimensional polynomials. In [16] the 
optimal sampling schedule for worst case estimation 
uncertainty is derived for n-dimensional polynomials whose 
monomials are the Cartesian product of the monomials of n 
distinct monodimensional polynomials.  

For other multidimensional polynomials only the numerical 
techniques described in [9] can be applied.  
As discussed in the introduction, the case in which n-
dimensional polynomials are the sum of n 
monodimensional ones, each one of which is function of a 
different variable, is of particular interest. In this section 
attention is focused on this particular class of polynomials 
for which some important results are reported. In order to 
simplify the notation, results are presented for 2-
dimensional polynomials of the form  

+++++= l
lxx xxxyxP θθθθ K2

210),(
j

jyy yyy θθθ ++++ K2
21  (4) 

in which variables x and y are bound in the intervals 
],[ ba xx  and ],[ ba yy  respectively. Extension to 

polynomials of higher dimension is straight forward.  

3.1 Worst case estimation uncertainty 
Let ]},[],{[, baba yyxxT ×=∞∞  be the set of all possible 
measurement where the polynomial of relation (4) could be 
measured. In order to get the optimal sampling schedule 

)( ,∞∞TTo  no closed form solution is available and only a 
numerical solution can be sought applying the procedure 
described in [9] to a finite dimension set ∞∞,

~T  that 
approximates ∞∞,T  and is constituted by the points on a 

tight grid on ],[],[ baba yyxx × . The tighter the grid the 

higher the cardinality of ∞∞,
~T  and the better its 

approximation of ∞∞,T . However very high cardinality of 

∞∞,
~T  leads to computational and numerical problems. The 
problem can be simplified making use of the following 
result that is stated as a conjecture since it is supported by 
numerical evidence, but has not been proved. To this 
extent consider the sampling schedule jlT ,  whose elements 
are the nodes of the grid that is obtained using in the x 
dimension the optimal estimation uncertainty sampling 
schedule for l-th order polynomials and in the y dimension 
the optimal estimation uncertainty sampling schedule for j-
th order polynomials. 

Table 2: worst case prediction error which results when using a uniform schedule, the schedule provided by the roots of the 
1st kind Chebyshev polynomial, and a numerically evaluated almost optimal schedule 

Number of measurements used for identification Polynomial 
degree 4 5 6 7 8 9 10 

Uniform sampling schedule 1.25 1.08 1.08 1.04 1.04 1.03 1.02 
Chebyshev sampling schedule 1.41 1.12 1.15 1.07 1.08 1.05 1.05 2 
Numerically optimal schedule 1.25 1.08 1.08 1.04 1.04 1.03 1.02 
Uniform sampling schedule 1.63 1.29 1.19 1.19 1.11 1.08 1.06 
Chebyshev sampling schedule 1.43 1.37 1.41 1.17 1.15 1.16 1.09 3 
Numerically optimal schedule - 1.25 1.16 1.12 1.08 1.06 1.05 
Uniform sampling schedule - 2.21 1.71 1.41 1.29 1.22 1.17 
Chebyshev sampling schedule - 1.57 1.66 1.40 1.41 1.19 1.21 4 
Numerically optimal schedule - - 1.39 1.25 1.19 1.15 1.13 
Uniform sampling schedule - - 3.10 2.18 1.88 1.59 1.43 
Chebyshev sampling schedule - - 1.68 1.63 1.48 1.39 1.41 5 
Numerically optimal schedule - - - 1.47 1.36 1.25 1.20 
Uniform sampling schedule - - - 4.55 3.09 2.30 2.05 
Chebyshev sampling schedule - - - 1.78 1.84 1.67 1.51 6 
Numerically optimal schedule - - - - 1.56 1.44 1.35  
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This grid is referred to as optimal estimation uncertainty 
grid. 
Conjecture: The optimal sampling schedule )( , jlo TT  
computed for the sampling schedule jlT , provided by the 
optimal estimation uncertainty grid is equal to the optimal 
sampling schedule )( ,∞∞TTo  of the ∞∞,T  set. 

The conjecture appears to state a strong result since it 
allows to reduce the search of the optimal sampling 
schedule from a set of dimension ∞2  to a set of dimension 

).1()1( +⋅+ jl  This indeed is even more important for n-
dimensional polynomials, when the reduction is from an ∞n 
dimensional set. However in practice the result is not as 
strong as it looks since the following facts hold. 
● The numerical procedure, described in [9], to get the 

optimal sampling schedule )( , jlo TT  usually leads to a 

suboptimal sampling set )( , jlso TT . 

● In general there are more than one optimal sampling 
schedule )( , jlo TT . 

● In general the optimal sampling schedule changes if 
the domain ],[],[ baba yyxx ×  is shifted. 

In the two dimensional case we are considering, as long as 
the degrees l and j are not too high, an exhaustive search 
of the optimal sampling schedule can be carried on. This 
was done for the particular case in which l=j=5 and 
normalizing ]1,0[]1,0[],[],[ ×=× baba yyxx . In these 
conditions 36 possible sampling points have to be 
considered. It results that there are two optimal sampling 
sets of cardinality 111 =++= jlp . 

If instead ]2,1[]2,1[],[],[ ×=× baba yyxx  is considered, no 
optimal sampling set of cardinality 111 =++= jlp  can be 
found. This indeed can be explained with the fact that the 
shift of coordinates behaves like a change of base in the 
description of the polynomial and it is known that optimal 
sampling is sensitive to changes of base [11]. 

3.2 Worst case prediction error 
For what concerns the worst case prediction error of the 
two dimensional polynomial in relation (4), a minimum of 

111 =++= jlm  measurements are needed. They should 
be collected l+1 different values of x and at j+1 different 
values of y in order to allow the parameter vector to be 
identifiable. 
With such minimum number of measurements the 
prediction error is anyway rather consistent.  
As an example considering again the particular case in 
which ,5== jl  ]1,0[]1,0[],[],[ ×=× baba yyxx  and the error 
measurement error bound is 1=E , when using the two 
optimal sampling sets that ensure the minimum worst case 
parameter uncertainty the corresponding prediction error is 
equal to 9.00 in one case and 8.44. This indeed shows that 
the minimum number of measurements is not good enough 
to ensure a limited prediction error. 
To ensure a limited prediction error the polynomial (4) 
should then be evaluated on a suitable grid of points out of 

]},[],{[, baba yyxxT ×=∞∞ . In this regard the optimal 

solution seems to be a sampling schedule predT  whose 
elements are the nodes of the grid that is obtained using in 
the x dimension the optimal prediction error sampling 
schedule for l-th order polynomials and in the y dimension 
the optimal prediction error sampling schedule for j-th order 
polynomials. This grid is referred to as optimal prediction 
error uncertainty grid. 

In the previously considered numerical case the use of this 
grid ensured a worst case prediction error of 1.68 that rises 
to 1.99 if the optimal estimation uncertainty grid jlT ,  is 

used, and further rises to 3.11 if a uniform 6×6 grid is used. 
It is worth noting that while a grid on the whole two 
dimensional space is needed in order to ensure a limited 
worst case prediction error computed according to equation 
(10), once actual measurements are collected the actual 
prediction error is given by relation (9). Under mild 
assumption on the measurement error distribution it results 
that the actual prediction error is smaller than the worst 
case one. 
4 CONCLUSIONS 
In this paper the problem of sampling selection to identify 
multidimensional polynomials which are the sum of n 
monodimensional ones each one of which is the function of 
a different variable has been considered. Two optimal 
sampling selection schedules have been considered. The 
one aims to minimize the worst case uncertainty on the 
parameter estimates while the other aims to minimize the 
worst case prediction error that can be committed while 
using the identified polynomial to approximate the real 
unknown one.  
While for the monodimensional case, when the optimal 
estimation error sampling (that minimizes the worst case 
estimate uncertainty) is used then also the resulting 
prediction error is relatively close to its minimum 
achievable value, for the multidimensional case this is no 
longer true. On top of this it appears that in general the 
optimal estimation error sampling in the multidimensional 
case is hard to be found since numerical algorithms which 
are the only available tool, often provide suboptimal 
solutions.  
In the multidimensional case when the prediction error is of 
concern and it must be reduced to a minimum, 
measurements need to be collected on the nodes of a grid 
in the n-dimensional space that is obtained selecting, in 
each dimension, the monodimensional optimal prediction 
error sampling schedule.  
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