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Abstract: The energy-intensive steel industry, which consumes substantial amounts of electricity, 
meets its power demands through external electricity purchases and self-generation through the 
operation of its own generators. This study aimed to optimize boiler combustion efficiency and in-
crease power generation output by deriving optimal operational values for O2 and CO within the 
boiler flue gas using machine learning (ML) with the aim of achieving maximum boiler efficiency. 
This study focuses on the power-generation boilers at steel mill P in Korea. First, 361 types of oper-
ation data from power generation equipment were collected and preprocessed. Subsequently, a par-
tial least squares regression (PLSR) algorithm was used to develop a prediction model for O2 and 
CO values, known as the Boiler Flue Gas Prediction Model (BFG-PM). The prediction accuracy for 
O2 was notably high (83.2%), whereas that for CO was lower (53.4%). Nonetheless, the model’s reli-
ability was high because more than 90% of the predicted values were within a 10% error range. 
Finally, the correlation of the BFG-PM model was applied to the performance test code (PTC) 4.0 
for the boiler efficiency calculations formula, deriving the optimal O2 and CO control points. 
Through a simulation, it was verified that the boiler efficiency was improved by controlling the 
combustion air. In addition, an average increase in boiler efficiency of 0.29% was confirmed by ap-
plying it directly to the generator operating on-site. The results of this study are expected to con-
tribute to annual cost savings, with a reduction of USD 217,000 in electricity purchasing costs and 
USD 19,700 in greenhouse gas emissions trading expenses. 

Keywords: machine learning; power plant in steel mill; boiler efficiency; combustion control; flue 
gas prediction; regression; partial least squares; performance test code 4.0 
 

1. Introduction 
1.1. Background of Study 

An increase in energy demand and energy costs since the COVID-19 crisis has af-
fected the production cost of power generation, in which the unit cost of electricity power 
in Korea has increased by 64.4%, six times since January 2021 [1]. This results in a burden 
of production costs in the manufacturing industry, particularly in the steel-making indus-
try, which consumes a great deal of energy. Most of the electric power used in a repre-
sentative steel mill, P, is supplied by in-house power stations; however, an insufficient 
amount of power is purchased from external suppliers. The total annual power consump-
tion of steel mill P was 24,492 GWh, which corresponds to the amount of power generated 
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by three nuclear reactors. Specifically, 16,013 GWh (65%) is generated by byproduct gas, 
2979 GWh (12%) is generated by LNG, 2653 GWh is generated by other generation 
sources, and a deficient amount of 2847 GWh is procured through external purchases [2]. 
Therefore, Steel Mill P needs an increased power generation output because it still pur-
chases power from external sources despite its own power generation operation. 

Power generation efficiency is mainly determined by the boiler and turbine effi-
ciency. A steam power-type boiler generates steam by burning fuels at 90% thermal effi-
ciency, whereas a steam turbine receiving the generated steam produces 40% power gen-
eration efficiency by converting high-temperature, high-pressure force into electricity at 
50% thermal efficiency [3]. In the past, process improvements were achieved through ex-
haust heat recovery or by replacing the balance of the plant (BOP) with high-efficiency 
equipment. 

Generators operated at steel mill P are divided into two types: steam power genera-
tion, in which steam turbines are operated through high-temperature, high-pressure 
steam using by-product gas; and combined power generation, in which gas turbines are 
operated using liquefied natural gas (LNG), and additional power is generated through 
the exhaust gas heat of the gas turbines [4]. Of these two types, this study targeted steam 
power generation, for which boiler combustion control is difficult because changes in cal-
ories are large owing to various fuel types and the supplied flow rate varies frequently. 
Steam power generation utilizes four types of byproduct gases: blast furnace gas (BFG), 
coke oven gas (COG), Linz–Donawiz converter gas (LDG), and FINEX off-gas (FOG). 
These gases are generated during the iron-making, steel-making, and formation pro-
cesses. Table 1 presents the calories and components of each type of byproduct gas. 

Table 1. By-product gas calorie content and components. 

Category BFG 1  COG 2  LDG 3 FOG 4 
Standard calorie (Kcal/Nm3) 750 4400 2000 1350 

Specific gravity 1.03 0.42 1.04 1.38 

Component  
(%) 

CO2 20.7 3.1 17.8 33 
O2 - 0.3 - - 

C2H4 - 2.0 - - 
CO 20.0 8.4 64.2 43 
CH4 - 26.6 - 1 
H2 3.2 56.4 2.0 21 
N2 54.1 2.3 15.9 2 

1 BFG: blast furnace gas. 2 COG: coke oven gas. 3 LDG: Linz–Donawiz converter gas. 4 FOG: FINEX 
off-gas. 

The power generation operation process using the byproduct gas is as follows. First, 
fuel and appropriate combustion air are burned in a boiler, and then the tube positioned 
in the top part of the boiler is heated to convert water into high-temperature, high-pres-
sure steam of 541 °C and 131 bar. Here, the high-temperature gas burned in the boiler is 
discharged externally through a duct and chimney, and a gas–air heater (GAH) for high-
temperature heat recovery is installed to heat the combustion air. High-temperature, high-
pressure steam moves to a steam turbine through pipes to rotate the turbine wings, and 
the generator connected to the turbine form a magnetic field by inducing an interaction 
between the rotor and stator through rotation, thus generating electricity. Figure 1 shows 
the power generation process, which consists of three parts: a boiler that burns the by-
product gas, a generator that produces electric power, and the BOP. 
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Figure 1. Power generation process in a steel mill (1 BFG: Blast furnace gas, 2 COG: Coke oven gas, 3 
FOG: FINEX off-gas). 

The boiler operation can become highly efficient by optimizing combustion control, 
which is adjustable based on the air–fuel ratio (AFR), as shown in combustion theory [5]. 
Boiler efficiency can be verified in real-time if there is a system, or combustion conditions 
can be monitored and controlled by checking the O2 and CO amounts in the flue gas dis-
charged through an exhaust air duct if a system is not available. In other words, high-
efficiency operation is feasible if combustion is controlled by the amounts of O2 and CO 
in the flue gas. Therefore, a boiler can be operated with optimal efficiency through an ML 
analysis performed using the boiler combustion efficiency, AFR, and the O2 and CO 
amounts in the flue gas. 

1.2. Problem Statement and Objectives 
The steam-powered boiler at steel mill P involves combustion control based on the 

following mechanism for high-efficiency operation but also entails several problems. The 
combustion control mechanism is as follows: when fuel and air are placed in a burner 
together and ignited, combustion gas is generated. The O2 and CO of the combustion gas 
are analyzed to determine if combustion has been properly carried out; if the amount of 
O2 is lower or that of CO2 is higher than the threshold, more combustion air is added 
because it is determined as incomplete combustion when the fuel has not been sufficiently 
burned. Contrarily, if the amount of CO2 in the combustion air is excessive, combustion 
air input is adjusted since it is determined that heat loss has occurred due to excessive air 
input. Figure 2 shows the combustion control mechanism of a power plant boiler. 

 
Figure 2. Combustion control mechanism of power plant boiler. 

Currently, power plant boilers have issues with combustion control owing to the fol-
lowing problems: 
 Problem 1: Insufficient reliability of O2 and CO analyzer [6]; 
 Problem 2: Combustion air is not controlled [7]; 
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 Problem 3: Absence of flue gas control point for optimizing boiler combustion effi-
ciency [8].  
First, the insufficient reliability of the O2 and CO analyzers in the sensing part is 

caused by the contraction and expansion of the duct as the high-temperature flue gas 
passes through the exhaust duct. Furthermore, frequent malfunctions and lower reception 
rates are caused by vibrations generated by the boiler, which affects the analyzer. Unlike 
other power generation fuels, by-product gases contain a large amount of dust because 
they are by-products of steel-making processes. Therefore, a blockade in the zirconia an-
alyzer for analyzing a specific point occurred because of the dust contained in the gas, in 
addition to hunting and peak analysis values. 

Second, the combustion air is not controlled in the control part because of the reduced 
reliability of the analyzer and the inability to verify the amounts of O2 and CO in the flue 
gas. An operator ensures that a constant amount of air is placed without controlling the 
combustion air, even when the operation state changes. In other words, changes in the 
type or supply of by-product gas require changes in the AFR control as well; however, the 
initial seĴing of ensuring that flue gas O2 becomes 2% is not adjusted, which results in 
excess air combustion or incomplete combustion, depending on the context. Therefore, 
uncertain O2 management causes incomplete combustion of the boiler or excess air com-
bustion, leading to reduced boiler efficiency and power generation output. 

Finally, the problem with the absence of a control point for optimizing boiler com-
bustion efficiency is described. Currently, operation with 2% O2 is set as the standard, 
based on equipment conditions and previous experience [9]. However, it is impossible to 
verify whether the boiler efficiency has improved, even when the operation ensures 2% 
O2. If a system is available for checking boiler efficiency, combustion air can be controlled 
by deducing the amounts of O2 and CO in the flue gas that optimizes the boiler efficiency, 
even if the fuel flow rate and calories change; however, such a system is currently una-
vailable. Therefore, there is an absence of a system for examining boiler efficiency. 

As a part of the solution, the analyzer was replaced with the latest high-performance 
sensor. A tunable diode laser spectrometer (TDLS) capable of a more stable analysis across 
a broader range was additionally installed; securing reliability was still limited because 
the O2 concentration varied depending on the analysis point owing to the stratification 
phenomenon where the flue gas is not easily mixed. In addition, a dust collector using the 
cyclone principle was installed, and chemicals were sprayed to partially remove the dust 
included in the by-product gas supplied to the power plant [10]. However, the dust re-
moval effect was insignificant, and other maintenance limitations remained. 

To solve the problem of inadequate control of boiler combustion, this study aimed to 
perform combustion control by securing the reliability of the O2 and CO analyzers to op-
timize boiler combustion efficiency and increase the power generation output. For the 
above purposes, the combustion condition of a boiler needs to be inspected first, based on 
a stable prediction of the amounts of O2 and CO, even when the analyzer is not operating 
smoothly, by developing a model for predicting the amounts of O2 and CO in the flue gas 
in a boiler. To this end, ML modeling was designed to find critical variables related to the 
boiler flue gases, O2 and CO, and to predict the final values based on long-term micro data 
collected from various internet of things (IoT) devices installed on the generators at steel 
mill P. Because a generator is highly complex equipment and the types of data collected 
from sensors vary markedly, it is crucial to find the major variables related to the predicted 
values. This study developed a model based on data collected from sensors aĴached to 
the power generation facilities. The sensor data are mainly composed of continuous nu-
merical values and exhibit time-series paĴerns over time. In addition, these data are char-
acterized by their large volume. Hence, considering the importance of selecting key vari-
ables for modeling, this study developed a model using a data-driven approach based on 
machine learning, specifically the partial least squares regression (PLSR), which allows 
for assessing variable importance.  
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To guarantee the effectiveness of increased power generation output, this study 
aimed to deduce the amounts of flue gas O2 and CO that maximized boiler combustion 
efficiency for each fuel condition based on a boiler combustion efficiency calculation equa-
tion. The intention was to enable combustion air control by applying boiler flue gas O2 
and CO model values derived using ML modeling. Consequently, operators would con-
duct operations based on highly reliable flue gas conditions, thereby increasing the boiler 
combustion efficiency and enhancing the power generation output. This approach mini-
mizes the purchase of external electricity by optimizing power generation within the fa-
cility. 

This study distinguishes itself from previous research in several key ways. The nov-
elty of this study lies in its utilization of machine learning not only to predict flue gas O2 
levels but also CO levels, and additionally in integrating research on optimizing power 
plant boiler efficiency. This integrated approach provides more accurate information for 
boiler operation and has the potential to yield superior results in terms of efficiency opti-
mization. Furthermore, this research has systematically applied the developed boiler flue 
gas prediction model to an actual operational site in a steel mill. This validation of practi-
cal utility extends beyond theoretical models, confirming its applicability in real-world 
environments. Moreover, the analysis of the financial impact of the developed model is 
another unique aspect of this research, demonstrating the economic benefits of the devel-
oped technology. 

While various studies have explored the application of machine learning and AI in 
optimizing combustion efficiency in power plant boilers [11–31], most have been limited 
to either focusing solely on combustion flue gas O2 [19–23] or exclusively on boiler com-
bustion efficiency optimization [24–31]. This research sets itself apart by deriving boiler 
efficiency optimization points using predictions of both combustion flue gas O2 and CO 
levels, highlighting a scientific gap in existing research. These characteristics highlight that 
this research is technologically advanced and holds the potential to make a significant 
contribution to real-world industrial applications. 

1.3. Literature Review 
To improve the boiler combustion efficiency and increase the power generation out-

put, which are the objectives of this study, previous studies conducted on traditional 
methods were reviewed, and flue gas monitoring technology to check the boiler combus-
tion state was examined. Subsequently, cases that integrated artificial intelligence (AI) 
with the boiler combustion efficiency optimization performed in this study were re-
viewed, and the necessity of this study was highlighted based on the implications and 
limitations of previous studies. 

1.3.1. Conventional Studies on Improvements in Power Plant Efficiency  
Because generators are large-scale general equipment, overall efficiency improve-

ment can be aĴained by identifying the energy loss and performance degradation per unit 
of equipment or by rationalizing or replacing equipment with the latest high-efficiency 
equipment. Because related efforts have been made in the past and are still ongoing, pre-
vious studies that deduced improvements in the energy loss and efficiency of generators 
were reviewed. Murehwa et al. analyzed the loss of available energy, or exergy, of each 
equipment to identify energy loss for determining improvement measures for plant pro-
cesses and discovered that the greatest loss of available energy occurred in the boiler 
(48.92%), mostly as a result of the combustion reaction and a large temperature difference 
during heat transfer between combustion gas and steam. The researchers also identified 
tube contamination, burner defects, fuel quality, inefficient exhaust ventilation, and air 
heater contamination. Therefore, modifying or replacing boilers is recommended to im-
prove power generation efficiency by minimizing energy loss [11].  

Regarding the energy loss of a boiler, which is directly related to power generation 
efficiency, Karri discovered that efficiency degradation was mainly caused by heat loss 
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due to flue gas loss and moisture content of fuel, and that the performance of a boiler 
could be improved by decreasing flue gas temperature and lowering the moisture content 
of fuel through boiler efficiency calculation [12]. Mandi et al. conducted a study to im-
prove the overall efficiency by increasing the energy efficiency of major auxiliary devices 
of a generator. The impact of a decrease in the induced draft fan (IDF) load after IDF over-
haul and flue gas pressure decrease on overall efficiency improvement was determined 
[13]. Hasanuzzaman et al. proposed a power generation efficiency improvement through 
energy reduction using a recuperator for preheating the combustion air and an econo-
mizer for waste heat recovery [14]. Ibrahim et al. proposed a parametric analysis and sim-
ulation model to improve the performance and power output of a power plant and dis-
covered that increased steam pressure induced an increase in the overall thermal effi-
ciency and power output, and that the turbine inlet temperature was a key variable [15]. 
Errami et al. presented a nonlinear control strategy based on nonlinear backstepping the-
ory for tracking the maximum power point and regulating the rotational speed of the per-
manent magnet synchronous generator (PMSG) in a 4 MW wind power generation system 
[16]. Mosobi and Gao established a distributed generator (DG) system for addressing 
power quality (PQ) issues in low-voltage networks based on renewable energy sources. 
This DG system integrates components such as a photovoltaic system (PVS), wind energy 
generating system (WEGS), and micro-hydro generating system (MHGS), and connects 
them to a common DC bus [17]. Regarding efficiency improvement for other equipment 
in addition to the boiler, Khaleel et al. verified the improvement in efficiency by modeling 
using an exergy evaluation to ensure that coal-fired electrical power plants could still be 
operated optimally under new conditions instead of the initial design conditions, as con-
ditions can deteriorate [18].  

1.3.2. Studies on Boiler Flue Gas Prediction 
Boiler combustion efficiency optimization for increasing power generation efficiency 

can be carried out when combustion flue gas can be consistently and accurately measured. 
Thus, a variety of combustion flue gas monitoring methods have been examined because 
of the limitations in measuring O2 and CO amounts in combustion flue gas using a phys-
ical analyzer. Zaporozhets developed linear model (LM) programmer-based flue gas O2 
concentration monitoring software to monitor the combustion process of a boiler, as well 
as other types of software that were applicable to the combustion process control of vari-
ous types of fuels [19]. Tang et al. extracted highly correlated variables using the LASSO 
algorithm to predict the amount of O2 in boiler combustion flue gas, using a deep belief 
network (DBN) to model two variable groups, and combined forecasting using least-
squares support vector machines (LS-SVM) [20]. Pan et al. predicted the O2 amount in 
boiler combustion flue gas using long short-term memory (LSTM) modeling within the 
Keras deep learning framework and further augmented the model’s accuracy by selecting 
parameters through experiments [21]. As a forecasting method using AI for measuring 
combustion flue gas, Effendy et al. proved that the O2 amount in combustion flue gas 
could successfully be predicted by using an artificial neural network (ANN) and a random 
forest-based soft sensor for monitoring the boiler combustion efficiency [22]. Li et al. sug-
gested a convolutional neural network (CNN)-based model to improve the accuracy of 
predicting the O2 amount in boiler combustion flue gas and verified high consistency 
through comparisons [23].  

1.3.3. Boiler Combustion Efficiency Improvement Using AI 
This study also reviews previous studies that utilized AI to optimize the combustion 

efficiency of power-generation boilers. Santoso et al. proposed an approach for designing 
a fuzzy logic controller for the optimization of the air–fuel ratio during the boiler combus-
tion process and suggested boiler combustion efficiency improvement through the reduc-
tion of excessive air [24]. Liu et al. proposed a method for improving the boiler combustion 
efficiency by integrating a non-dominated sorting genetic algorithm (NSGA2) of multi-
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objective optimization techniques with computational fluid dynamics (CFD) because con-
ventional AI-based optimization techniques were limited, despite the fact that the boiler 
combustion process needs to be optimized to improve the efficiency of coal-fired power 
generation. Consequently, the temperature and speed of air in the boiler were adjusted to 
prevent thermal efficiency degradation caused by foreign substances built up on the boiler 
tube surface and to drastically improve the boiler efficiency [25]. Li et al. utilized and ver-
ified a least squares, fast learning network (LSFLN), which demonstrates outstanding per-
formance, even in nonlinear systems that are fairly complicated, inertial, and have a time 
delay, for a more accurate prediction of the combustion efficiency of a coal-fired boiler 
[26]. Suntivarakorn et al. constructed an automatic combustion control system using a 
fuzzy logic control algorithm to execute combustion flue gas heat usage, combustion air 
preheating, and air–fuel ratio control to obtain boiler efficiency improvement [27].  

Wang et al. applied boiler combustion optimization to reduce NOx emissions in a 
complicated boiler combustion mechanism based on genetic algorithm (GA) modeling of 
the Gaussian process (GP). The results are similar to the NOx emission predictions derived 
through modeling using support vector machines (SVM) [28]. Shi et al. used an ANN to 
develop a boiler combustion optimization model for coal-fired power plants and general-
ized the model using CFD, thus predicting thermal efficiency successfully. The research-
ers used a GA, which is a multi-objective optimization algorithm, to determine an optimal 
air distribution method to improve and verify the thermal efficiency of a boiler [29]. Niu 
et al. built a boiler combustion process model using LS-SVM for boiler combustion system 
optimization and revealed that the boiler combustion efficiency improved by 0.68% 
through real-time data mining and online optimization [30]. Vieira et al. proposed a model 
capable of estimating the steam generation efficiency, power generation, and flue gas of a 
boiler using an ANN and discovered that the flue gas outlet temperature and air pressure 
were significant parameters for steam generation efficiency and power generation [31]. 
Table 2 presents an overview of previous studies by category. 

Table 2. Overview of previous literature on power plant efficiency improvement and flue gas O2 
prediction. 

Category Methods/Tools Used for Efficiency Improvement Year Authors 

Conventional 
efficiency 

improvement 

Exergy analysis 2012 Murehwa et al. [11] 
Flue gas temperature drop 2012 Karri [12] 
Flue gas pressure drop and induced draft fan overhaul 2012 Mandi et al. [13] 
Air pre-heating using recuperator 2012 Hasanuzzaman et al. [14] 
Parametric analysis and simulation model 2017 Ibrahim et al. [15] 
Nonlinear control strategy based on nonlinear backstepping theory 2019 Errami et al. [16] 
System development by integrating PVS, WEGS, and MHGS 2021 Mosobi and Gao [17] 
Modeling through exergy evaluation 2022 Khaleel et al. [18] 

Prediction 
of flue gas 

Flue gas O2 monitoring using linear model programming 2019 Zaporozhets [19] 
LASSO algorithm, deep belief network, and least squares support vec-
tor machine 

2020 Tang et al. [20] 

Long short-term memory modeling 2020 Pan et al. [21] 
Artificial neural network and random forest-based soft sensor 2022 Effendy et al. [22] 
Convolutional neural network modeling 2023 Li et al. [23] 

Boiler 
combustion  
efficiency 

improvement 

Reducing air with a fuzzy logic controller 2005 Santoso et al. [24] 
Non-dominated sorting genetic algorithm and computational fluid 
dynamics 

2014 Liu et al. [25] 

Least square fast learning network 2014 Li et al. [26] 
Auto-combustion control system using a fuzzy logic control algorithm 2016 Suntivarakorn et al. [27] 
Gaussian process and genetic algorithm 2018 Wang et al. [28] 
Artificial neural network and computational fluid dynamics 2019 Shi et al. [29] 
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Least squares support vector machine 2020 Niu et al. [30] 
Artificial neural network 2021 Vieira et al. [31] 

1.3.4. Limitations of Previous Research 
Conventional methods for power generation efficiency improvement and other effi-

ciency improvement methods in various domains were examined in a literature review, 
and it was confirmed that combustion flue gas measurements can be predicted using AI 
for the stable operation of a boiler. In particular, the unstable performance and malfunc-
tion of analyzers causes difficulty in optimizing boiler combustion efficiency, and most 
studies have focused on various algorithms and software development for the replace-
ment of analysis values. Finally, cases of utilizing AI to optimize the combustion efficiency 
of power plant boilers, which is the main objective of this study, were reviewed. Some 
studies have been conducted on combustion air control and thermal efficiency improve-
ment through the development of automatic combustion systems and optimal combus-
tion modeling utilization algorithms. However, most combustion flue gas predictions 
have been limited to O2, and boiler combustion efficiency optimization has been studied 
separately from stable flue gas prediction. Thus, it was challenging to find a case that com-
prehensively researched the deduction of boiler efficiency optimization points using the 
predicted O2 and CO amounts in the combustion flue gas. 

The PLSR applied to the model development in this study enables the prediction of 
flue gas O2 and CO values, which are essential for boiler combustion efficiency optimiza-
tion. It is expected that by selecting key variables from sensor data using PLSR, the pre-
diction accuracy can be improved. Consequently, by applying the O2 and CO prediction 
models developed through PLSR into the calculation formula for boiler combustion effi-
ciency optimization, the study derived the operating points for O2 and CO at which boiler 
combustion efficiency is maximized. ML is the process of training a computer to learn 
through data and make improvements through experience instead of explicitly program-
ming the computer for learning and improvements [32]. It is extremely challenging to de-
duce the optimal points and relevance of certain elements through statistical analyses or 
the intuition of a skilled expert for a generator operated by recording 361 sensing data 
points in seconds. Therefore, this study aimed to create a model using ML to predict the 
amounts of O2 and CO that complement abnormal measurement values and the frequent 
breakdown of an analyzer that measures the flue gas of a boiler in which various types of 
fuels are simultaneously burned. Following that, the O2 and CO prediction models were 
replaced with the boiler efficiency calculation equation suggested by the American Society 
of Mechanical Engineers (ASME), PTC 4.0, to deduce and apply O2 and CO values that 
maximize efficiency. 

2. Research Process 
In this section, the overall research process is described, and the main content of each 

section is summarized.  
Section 4 presents the data selected for the development of a model that predicts the 

amounts of O2 and CO in boiler flue gas. Variables related to the flue gas, boiler, and power 
generation output were selected through feature selection, and unnecessary variables, 
missing data, and outliers were removed.  

In Section 5, the ML algorithms applied to the model development are explained and 
selected by reflecting on the characteristics of the selected data and research outcomes. In 
addition, the boiler flue gas prediction model (BFG-PM) is explained, along with the train-
ing and fine-tuning procedures.  

In Section 6, the target value for judging the relevance of the developed model is de-
termined, and whether the O2 and CO prediction models completed through training and 
fine-tuning are appropriate for the performance target is examined. The results and per-
formances of the models are summarized.  
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In Section 7, the completed BFG-PM for combustion efficiency optimization is substi-
tuted into the boiler efficiency calculation equation to determine the amounts of O2 and 
CO that maximize the boiler combustion efficiency and to systematize the relationships. 
Accordingly, the boiler efficiency calculation equation is explained, along with the process 
of substituting and deducing the correlations between O2, CO, and BFG-PM. Finally, the 
system configuration and driving procedure are explained.  

In Section 8, field applicability is judged based on simulations and relevant results. 
The application results for improving the efficiency and determining the combustion state 
of a boiler are verified to deduce efficiency improvement measures. Finally, in Section 9, 
the BFG-PM developed in this study and the boiler efficiency calculation equation are 
used to compute the economic effects of optimal combustion control. Figure 3 illustrates 
the overall process of this study.  

 
Figure 3. The overall research process. 

3. Data Preparation 
3.1. Data Acquisition 
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For this study, operational data for the power generation equipment were collected. 
The 100-MW generator no. 11, located in Pohang, was selected from among the steam 
generators operated by company P as the generator from which the data were collected 
for this study. Generator no. 11 has a high operation rate of electric power generators de-
spite changes in operating conditions at the steel mill, accessible data storage, digitaliza-
tion through IoT devices, and analyzers for the flue gas O2 and CO analysis during boiler 
combustion.  

The data collected from sensors in the generator equipment were stored in the oper-
ating room PLC and DAQ server and then extracted and stored in the cloud through a 
manufacturing execution system (MES) of PosFrame, which is a standard platform devel-
oped by POSCO DX for long-term storage, analysis, and utilization using P/C and HMI. 
Figure 4 illustrates the data collection, storage, and extraction processes.  

 
Figure 4. The process of data acquisition from Company P. 

The data collection period was one year, from 1 September 2018 to 30 August 2019, 
to ensure a sufficient amount of time was considered so that the data could be adequately 
analyzed even if data loss occurred due to the malfunction of analyzers, and the collection 
interval was set to 10 min. Considering the nature of a generator that is constantly oper-
ated, the data type was continuous and structured, and the data did not require analysis 
in seconds because the conditions did not vary drastically owing to steady operation. 

The size of the downloaded data was 116 MB, consisting of 11 classes and 361 features 
from the raw data of all tags collected during the operation period. The items in the gen-
erator data were divided into three categories: boilers, generators, and BOP. Boilers that 
generate steam by burning fuel are divided into four classes: fuel combustion system boil-
ers, heat-exchange equipment, high-pressure steam boilers, and water supply system boil-
ers. Subsequently, the 167 features were classified and stored as real-time data. A genera-
tor that generates power is then divided into two classes of generator and drive systems, 
and 13 features were classified and stored accordingly. Lastly, BOP is divided into five 
classes: condenser system, high voltage power equipment, low voltage power equipment, 
and steam turbine, and then 187 features were stored (Table 3). 

Table 3. Data collected from the manufacturing execution system. 

Category Class Features 
Number of 

Features 

Boiler 
(167) 

Fuel combustion system boiler 
Including BFG/COG/FOG calorie, BFG/COF/FOG flow con-
trol, TDLS O2/CO, flue gas O2, flue gas inlet/outlet temp, to-

tal fuel flow, total air flow control 
54 

Heat exchange equipment 
Including GAH inlet/outlet gas temp, GAH oil pump temp, 

FSH inlet/outlet steam temp, HPH inlet/outlet fw temp 
29 

High-pressure steam boiler 

Including FDF wind temp, FDF fan BRG temp, FDF motor 
BRG temp, AUX process steam temp, AUX steam head 

temp, STACK GAS flow, STACK_O2, main steam flow, pro-
cess steam flow 

60 
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 Water supply system boiler 
Including platen SH inlet V/V, platen SH out V/V, BFP 
wind temp, BFP suction FW PH, BFP motor BRG temp 

24 

Generator 
(13) 

Generator 
generator waĴ, generator mvar, generator zero phase cur-

rent, gfr fluid oil press 
4 

Drive system 
Including FDF/IDF VVVF output ampere, FDF/IDF VVVF 

output voltage, FDF/IDF VVVF RPM 
9 

Balance of 
Plant 
(BOP) 
(187) 

Condenser system 
Including BCW CLR inlet/outlet temp, BCW PH, BCW 
pump outlet pressure, COND overflow control valve, 

COND pump recirculation control valve 
13 

High-voltage power equipment 
Including 6.6 kV unit BUS ampere, 6.6 kV unit BUS VAR, 
ESP unit main TR BCT Ao, main TR wind temp, unit AUX 

TR current, unit TR oil temp 
24 

Low voltage power equipment 
Including baĴery charger DC out current, baĴery charger 

baĴery current, 440 V unit BUS waĴ 
6 

Steam turbine 
Including turning speed, turning motor current, turbine in-
let steam press, turbine inlet steam temp, cold air exit temp, 

exciter current, exciter voltage 
96 

Water treatment system 
including make up water tank level, make up pump am-

pere, raw water pump out flow, degasifier clear water level 
48 

Total 361 

3.2. Data Preprocessing 
3.2.1. Feature Selection 

Feature selection refers to modeling with only significant variables with high explan-
atory power among given variable candidates, in which the smallest feature subset with 
a specific generalization error or the top feature subset with the k function is selected to 
generate a minimum generalization error [33]. Feature selection was performed twice. 
First, an ideal dependent variable was selected because multiple analyzers were installed 
in generator no. 11, resulting in six dependent variables related to O2. Since the most crit-
ical dependent variable for combustion control is O2, of the several flue gas O2 analyzers, 
data were reviewed based on TDLS_O2_A, TDLS_O2_B, FLUE GAS_O2_A, and FLUE 
GAS_O2_B. A telemonitoring system (TMS) was installed at the power generation boiler 
chimney to monitor the emission of air pollutants and had high reliability because it was 
positioned at the end of the exhaust passage. Accordingly, a correlation analysis was per-
formed between STACK_O2 and each analyzer to select the analyzer with the highest cor-
relation. The values of TDLS_O2_B were removed owing to numerous peaks and low re-
ception rates caused by frequent malfunctions. The results of the correlation analysis be-
tween the remaining three variables and STACK_O2 are shown in Figure 5. Figure 5a 
shows a 75.1% correlation between the TLDS_O2_A analyzer and STACK_O2; Figure 5b 
shows a 2.6% correlation between the FLUE GAS_O2_A analyzer and STACK_O2; Figure 
5c shows a 14.6% correlation between the FLUE GAS_O2_B analyzer and STACK_O2. 
Therefore, it was determined that TDLS_O2_A in Figure 5a, which had the highest corre-
lation with STACK_O2, demonstrated the most outstanding performance and was thus 
selected as the main analyzer. 



Energies 2023, 16, 6907 12 of 34 
 

 

    
(a) (b) (c) 

Figure 5. Correlation analysis between O2 analyzer and STACK_O2: (a) TDLS_O2_A analyzer; (b) 
FLUE GAS_O2_A analyzer; (c) FLUE Gas_O2_B analyzer. 

Second, executing ML with 356 features involved an excessive number of variables; 
therefore, preprocessing was performed to select representative variables. For the feature 
selection of independent variables associated with the combustion efficiency measure-
ment and amounts of O2 and CO in the boiler combustion flue gas, an analysis was per-
formed using the domain knowledge of four generator operators and two engineers. Con-
sequently, 24 independent variables related to boiler combustion and power generation 
output were extracted from the fuel combustion system boiler, heat exchange equipment, 
HP steam boiler, and generator. 

3.2.2. Data Cleansing and Derived Variable Creation 
Missing data and outliers were removed for data cleansing to prevent distortion and 

degradation of the learning performance of the model. ‘Missing data’ refers to a state in 
which no data were recorded, whereas ‘outliers’ refer to values that deviated markedly 
from the normal range of the observation data [34]. For continuous data, missing data 
were commonly removed or replaced with mean or median values, whereas outliers were 
removed or replaced with reference values based on the interquartile range (IQR) or z-
score if the observation data did not follow a normal distribution. However, steam power 
generation at a steel mill involves continuous operation, and all independent variables 
were considered significant because they were collected based on the changes in the out-
put according to the fuel supply and the changes in conditions according to fuel charac-
teristics. Instead, the data of the reception rate corresponding to 80% or less of the main 
analyzer with respect to the dependent variables were removed. 

Finally, derived variables were generated, in which new variables were created based 
on the collected data to improve the performance of the analysis. ‘Derived variables’ refers 
to newly generated variables using existing variables. Derived variables can only be used 
in a relevant analysis with logical validity because they were subjectively created by an 
analyst [35]. The fact that the boiler combustion efficiency optimization modeled in this 
study was highly correlated with the flue gas O2 amount, which depends on the BFG, 
FOG, and COG ratios and calories, was discovered through domain knowledge of the 
operation, and a transformation based on four arithmetic operations and functions was 
applied to existing variables to generate nine derived variables: BFG%, FOG%, COG%, 
BFG input capacity%, FOG input capacity%, COG input capacity%, BFG input capacity, 
FOG input capacity, and COG input capacity. This created a total of 33 independent vari-
ables, along with 24 other independent variables. 

The initially collected data had 361 features; however, 96.5% were removed through 
dimension reduction, missing data, outlier removal, and derived variable generation, ul-
timately leaving 20,697 data points. Figure 6 shows the data pre-processing performed to 
date. 
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Figure 6. The process of feature selection and data preprocessing. 

4. Boiler Flue Gas Prediction Model (BFG-PM) 
4.1. Model Selection 

An appropriate ML algorithm for the relevant problem must be selected when devel-
oping a model. The problem that needed to be solved was whether it belonged to super-
vised learning, unsupervised learning, or reinforced learning, and whether it was a re-
gression or classification problem. Furthermore, an appropriate algorithm can be selected 
to determine whether the relationship between the predictive variables and labels is linear 
or nonlinear, along with an understanding of the characteristics, strengths, and weak-
nesses of the data [36].  

Regression modeling was employed for model development in this study because a 
dependent variable, Y, exists for an independent variable, X, where data are utilized for 
modeling to predict the dependent variable, Y, corresponding to a new independent var-
iable, X. In machine learning-based regression modeling, various algorithms exist, includ-
ing linear regression, logistic regression, K nearest neighbors (KNN), support vector ma-
chine (SVM), and PLSR, among others. The choice of algorithm depends on the specific 
problem and dataset characteristics. It is noted that linear regression has limitations, par-
ticularly in terms of predicting accuracy when applied to feature selection, especially 
when dealing with a large number of variables. Logistic regression, KNN, and SVM algo-
rithms are more suitable for classification. In this study, the PLSR algorithm, which can 
effectively handle regression tasks when dealing with multi-variable and feature selection 
problems, was determined to be the most suitable choice. Table 4 presents the character-
istics of five popular regression algorithms for supervised learning. 

Table 4. Five popular regression algorithms used in supervised learning. 

Category Types Decision Characteristic Advantages Disadvantage 

Linear 
regression 

Regression Linear 
Finding best straight 

line 

Simple model easy 
/Implementation 

and interpretation 

Poor prediction  
on non-linear 

Logistic 
regression 

Classification Linear 

Binary classification 
/Categorical predic-

tion 
/Comparison of other 

models 

Simple model 
/easy implementation 

and interpretation 

Poor prediction  
in non-linear 

1 KNN 
Regres-

sion/Classifi-
cation 

Non 
Small outlier 

Identification a new 
data 

Easy multi- Classification 
/Intuition and Simple 

Vulnerable to outliers 
/Slow on big data 

2 SVM 
Regres-

sion/Classifi-
cation 

Linear/ 
Non-Linear 

Classification of 2 or 
more groups 

Categorical numerical prediction 
/Low impact on error data, 

Less overfiĴing 

Multiple combination 
tests required 
/Slow to learn 

/Difficult interpreta-
tion 
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3 PLSR 
Regres-

sion/Classifi-
cation 

Linear 
Considers  

input and output 
variables together 

Easy control of multi-collinearity 
/Variable reduction with correla-

tion 
/Efficient model construction 

Difficult interpretation 
of extracted variables 

1 KNN: K-nearest neighbors, 2 SVM: Support vector machine, 3 PLSR: Partial least squares regression. 

The review of the data characteristics in this study has highlighted several key points. 
Firstly, there are a large number of variables, and both input and output variables need to 
be considered simultaneously. Additionally, it has been recognized that there is a need for 
a regression analysis algorithm capable of variable reduction by examining inter-variable 
correlations. As a result of these considerations, the study applied the PLSR algorithm to 
develop the prediction models for boiler flue gas O2 and CO. PLSR involves extracting k 
linear combinations with a high covariance with dependent variables. This is frequently 
used in modeling to find a correlation between independent and dependent variables and 
consistently uses the least squares method for parts that cannot be explained by the ex-
tracted variables [37]. 

Furthermore, it is also frequently used when there are more predicted variables than 
observation values and to handle multicollinearity when there are numerous, highly cor-
related, independent variables. The correlation between X and Y is included in this com-
ponent because both X and Y are initialized through decomposition [38]. To apply PLSR, 
multicollinearity was prioritized because a high number of independent variables were 
highly correlated in regression modeling. The regression model was not significantly af-
fected by the amount of data, was the most basic and highly accurate and estimated the 
predictive values of dependent variables. Because multicollinearity causes distortion of 
the statistical significance of an independent variable, thereby inducing an unstable re-
gression coefficient such that analysis cannot be carried out, a correlation analysis was 
performed to identify the characteristics between features. As a result, at least seven 
groups had a value of 0.8 or higher between −1 and 1, which represents the linear relation-
ship of features, thus confirming the high multicollinearity of features. In general, 0.7 was 
chosen by rule of thumb in the correlation matrix analysis. First, dimension reduction 
must be performed to solve the multicollinearity problem to ensure that the applied mod-
eling does not cause distortion and obtain a stable regression coefficient. The PLSR algo-
rithm can predict dependent variables through feature extraction, where variables are ex-
tracted through the transformation of predicted variables, even if strong multicollinearity 
is present between independent variables. 

4.2. Modeling for Flue Gas Prediction 
Modeling is the process of generalizing data paĴerns by applying specific algorithms 

after preprocessing and analyzing a prepared dataset [39]. An ML algorithm appropriate 
for the prepared dataset and the deduced values was selected, and an optimal model was 
created through training, fine-tuning, and relevance evaluation. The PLSR algorithm, 
which was selected for predicting the O2 and CO amounts in boiler flue gas, was applied 
to the modeling using the SIMCA 13.0.3.0 program developed by SATORIUS. Figure 7 
shows the overall process of BFG-PM modeling. 
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Figure 7. Methodologies and modeling process. 

In the PLSR process, which is the core element of the model, one or more variables 
were generated as components when the initially prepared independent variable data 
were used as the input. The R2X for the independent variables and R2Y for the dependent 
variables were computed for multiple components generated using the extracted varia-
bles, where the R2X and R2Y values represent the relevance of the model. A greater R2X 
value indicates excellent dependence between variables, whereas an R2Y value closer to 1 
indicates high model reliability [40]. The score and loading plots were examined using a 
visual search. The score plot represents the extent to which the trained data were within 
the normal range and outliers were distributed, whereas the loading plot represents the 
correlation between influential factors with respect to Y. If the model trained in this way 
is judged to be suitable through the confirmation of the research criterion, model training 
is completed; otherwise, fine-tuning is performed and repeated using PLSR. 

Variable importance in the projection (VIP) was applied for fine-tuning. VIP involves 
leaving only significant variables and reducing the remaining variables, in which VIP is 
calculated by multiplying the square of variance and the correlation between the latent 
variable and the original variable. If VIP is one or greater, it is considered important and 
not eliminated [41]. Equation (1) represents VIP. 

VIP୩  =  ටK ∑ SS୬w୬୩
ଶ / ∑ SS୬


୬ୀଵ


୬ୀଵ , (1)

where  
K is the total number of signal variables 
wnk is the weight of the kth variable for the nth PLSR component 



Energies 2023, 16, 6907 16 of 34 
 

 

N is the total number of PLSR components 
SSn is the sum of squares explained by the nth PLSR component.  

When executing VIP, only variables with high significance were selected from the 
initially applied independent variables, X, and were then reapplied to PLSR.  

5. Model Implementation and Validation 
Model training refers to repeating and generalizing the process of finding the optimal 

parameters to learn various types of data and improve the results [42]. Modeling using 
the PLSR algorithm creates a model and provides prediction accuracy based on the given 
variables. Therefore, the final model is determined and verified through training (which 
maximizes accuracy) and by adjusting the variables based on the model’s prediction ac-
curacy. 

5.1. Model Implementation for Boiler Flue Gas O2 
5.1.1. Training of BFG-PM for O2 

For training the BFG-PM model for O2, three months of data from 18 October 2018 to 
11 January 2019, with the least amount of missing data on O2, were used. After completing 
the model, relevance was evaluated based on ±0.25%, where the error between measured 
and predicted values of O2 was within 10%, reflecting the opinions of field operators and 
engineers.  

For the first training, VIP was computed for all 33 independent variables to identify 
their priorities and was then applied to the PLSR to examine the variable correlation (R2X) 
and goodness-of-fit (R2Y) according to the components, in addition to the score plot and 
loading plot. Figure 8a shows that STACK_O2 had the largest value, thus having the most 
significance when determining variable importance based on the VIP of the 33 variables, 
whereas COG_CAL has the smallest value, thus having the least significance. Fine-tuning 
must be performed if the model’s accuracy using variables is low and the variables to be 
applied to the subsequent training are selected based on importance. Figure 8b is a loading 
plot, and it reveals that the dependent variable TDLS_O2_A is positioned in the first 
quadrant, indicating a positive correlation with other variables. This suggests a high 
degree of relevance between TDLS_O2_A and the variables in that quadrant. Figure 8c is 
a score plot, which is used to classify normal data within a 95% confidence interval of the 
model and identify abnormal data that fall outside this boundary. The results show that 
there are many abnormal data outside the ellipse, which represents the normal category. 
This indicates that there are a significant number of data that deviate from the expected 
paĴern and can be classified as abnormal. Figure 8d shows the visual exploration of the 
relevance between the analyzer and the prediction model, where a scaĴer located closer 
to the linear regression equation generated by the model represents high accuracy. 

 
(a) 
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(c) (d) 

Figure 8. Training output of BFG-PM: (a) VIP of variable 33 ea; (b) Loading plot; (c) Score plot; (d) 
Match between actual value and prediction value. 

When the PLSR was performed using the selected variables, a latent variable, or com-
ponent, was automatically generated by extracting the variable with a high covariance 
with the dependent variables. In the first training, the model’s reliability was highest when 
six components were generated, and the process was terminated. The deduced model had 
explanatory powers of 0.867 for variable dependence (R2X) and 0.744 for model reliability 
(R2Y). Table 5 shows the component creation and goodness-of-fit according to the variable 
extraction. 

Table 5. The variable suitability results based on model training. 

Component R2X R2Y 
1 0.283 0.282 
2 0.469 0.413 
3 0.524 0.657 
4 0.681 0.690 
5 0.806 0.721 
6 0.867 0.744 

Because the model generated using 33 variables had high multicollinearity, a second 
training session was performed to examine how the model’s goodness-of-fit changed 
when different variables were selected. Variable reduction was performed based on do-
main knowledge and variable importance using VIP. Spray variables were distinguished 
into A and B, but variable A was selected as the primary variable because the two values 
were identical. Input capacity was chosen as the primary variable for fuel variables among 
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Flow, Cal, %, and input capacity. The power output was excluded because it belonged to 
the result value. Consequently, a total of 17 process variables related to O2 were selected. 
When the model was re-analyzed based on the newly chosen variables, R2X was 0.925, and 
the model’s goodness-of-fit (R2Y) was 0.842.  

In the third training session, the model was analyzed using 13 variables, excluding 
four low variables with VIP, and an R2X of 0.764 and an R2Y of 0.836 were obtained. In the 
fourth training, the model was analyzed using 12 variables after excluding five low varia-
bles, including COG input capacity, in the 17 variables used in the second training; R2X 
and R2Y were 0.930 and 0.835, respectively, thus demonstrating no significant impact on 
the model. In the fifth training session, the model was analyzed based on the VIP using 11 
variables after excluding certain variables to examine the effects of spray variables: R2X 
and R2Y of 0.976 and 0.832, respectively, were obtained.  

In the sixth training, the model was analyzed based on the VIP using nine variables 
after excluding the GAH inlet air temperature, which was identical to the SAH inlet air 
temperature. R2X was 0.974 and R2Y was 0.833. In the seventh training session, the model 
was analyzed using eight variables after excluding STACK_GAS flow through discussions 
with and knowledge of field experts. R2X was 0.992 and R2Y was 0.832. The model was 
analyzed after excluding the FOG input capacity in the eighth training session, as in the 
seventh training session. R2X and R2Y were 0.945 and 0.803, respectively. Specifically, the 
R2X and R2Y values degraded abruptly; thus, additional training was terminated, and the 
seventh training was selected as the final model. Figure 9 shows the reliability obtained in 
eight training sessions of the BFG-PM model for predicting O2 in boiler flue gas. Figure 9a 
shows the initial training results. In contrast, Figure 9h shows the results of the eight train-
ing sessions, where the x-axis represents O2 prediction, and the y-axis represents the meas-
ured value. The functional equation of the predictive model is shown in the top-left corner, 
where R2 indicates prediction relevance. 

   
(a) (b) 

  
(c) (d) 
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Figure 9. Adaptation of variable Y according to the number of trainings: (a) 1st training - 6th compo-
nent; (b) 2nd training - 5th component; (c) 3rd training - 4th component; (d) 4th training - 5th compo-
nent; (e) 5th training - 6th component; (f) 6th training - 6th component; (g) 7th training - 4th component; 
(h) 8th training - 6th component. 

5.1.2. Implementation and Validation 
The training results were examined to select the final O2 prediction model. Variable 

reduction, including fine-tuning, was performed eight times to improve relevance for 
training. When the model’s goodness-of-fit was analyzed through variable reduction, the 
reliability remained consistent until the seventh training and then abruptly degraded in 
the eighth training. Table 6 summarizes the R2X and R2Y according to the number of train-
ing sessions. Independence between variables was the most appropriate in the seventh 
training, whereas the model’s reliability was the highest in the second training. To prevent 
performance degradation due to a correlation between independent variables caused by 
the large number of variables, the model was selected from the training results involving 
fewer than 13 variables. Therefore, the final model was set at the seventh training, where 
R2X was the highest; R2Y remained reasonably consistent after the third training. 

Table 6. The training results of the O2 model. 

Category Variables Components R2X R2Y Model Selection 
1st training 33 6 0.867 0.744  
2nd training 17 5 0.925 0.842  
3rd training 13 4 0.764 0.836  
4th training 12 5 0.930 0.835  
5th training 11 6 0.976 0.832  
6th training 9 6 0.974 0.833  
7th training 8 7 0.992 0.832 *✓ 
8th training 7 4 0.945 0.803  

*✓: selected model for O2 prediction. 
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The final model for predicting O2 using the BFG-PM included eight variables: 
SAH_INLET_AIR_TEMPERATURE, GAH_INLET_GAS_TEMPERATURE, GAH_OUT-
LET_GAS_TEMPERATURE_A, STACK_O2, MAIN_STEAM_FLOW, BFG HEAT INPUT, 
FOG HEAT INPUT, and TOTAL AIR FLOW, after seven training sessions, and had an X 
goodness-of-fit of 0.992 and Y goodness-of-fit of 0.832.  

For judging the relevance of the final BFG-PM O2 model, the data within or outside 
±0.25% of error in the O2 amount were distinguished between the measured values and 
predicted values of the seventh model, with a reliability of 83.2%. As a result, 90.89% of 
the predicted values, or 5199 of the total 5199 ea, were within the standard. Table 7 shows 
the performance of the seventh BFG-PM model for O2 prediction. 

Table 7. O2 prediction result of BFG-PM. 

Category O2 Prediction 
R2Y 0.832 

Acceptance criteria O2 gap between actual and prediction ±0.25% 
Result 90.89% 

Within standard 5199 ea 90.89% 
Out of standard 521 ea 9.11% 

Total 5720 ea 100% 

O2 prediction using the BFG-PM matched the measured values (83.2%). However, 
even if the two values do not fit perfectly, the prediction value was 90.89%, which was less 
than the O2 gap ± 0.25% or the requirement for appropriate operation. Thus, boiler com-
bustion control was determined to be feasible using the predicted O2 value. 

5.2. Model Implementation for Boiler Flue Gas CO 
5.2.1. Training of BFG-PM for CO 

To train the BFG-PM model for CO, three-month data from 31 May to 31 August 2019 
were used. The relevance of the model was judged on CO gap ± 350 ppm, where the dif-
ference between measured and predicted values was within 10%, and the training was 
performed in the same manner as the O2 prediction model. 

For the first training, VIP was computed for all 33 independent variables to identify 
their priorities and then applied to the PLSR to examine the variable correlation (R2X) and 
goodness-of-fit (R2Y) according to the components, in addition to the score and loading 
plots. The variable importance of the 33 variables was judged in the same manner as that 
for O2. When 10 components were generated, the goodness-of-fit of the variables, R2X, was 
0.750, while the model’s goodness-of-fit, R2Y, was 0.453. Abnormal data were predomi-
nant in the score plot, while the correlation between the variables was insignificant in the 
loading plot. 

In the second training, the model was analyzed by selecting 17 process variables re-
lated to CO (after removing Spray B based on VIP and domain knowledge) and the power 
output corresponding to the result. Using input capacity as the primary variable among 
fuel variables of Flow, Cal, %, and input capacity, R2X was 0.976, and the model’s good-
ness-of-fit (R2Y) was 0.543.  

The model’s results were deduced by repeating the training and fine-tuning to find 
the most appropriate X and Y. The eighth model was selected after repeating the training 
nine times. 

5.2.2. Implementation and Validation 
The training results were examined to select the final CO prediction model. For train-

ing, variable reduction, including fine-tuning, was performed nine times to improve rele-
vance (Table 8). The goodness-of-fit of variable X was excellent in the fourth, fifth, and 
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eighth training sessions. In particular, the goodness-of-fit of variable Y was outstanding 
in the fifth and eighth training sessions. Therefore, the eighth model was selected to pre-
vent errors from increasing owing to multiple variables by simplifying the model. 

Table 8. The training results of the CO model. 

Category Variables Components R2X R2Y Model Selection 
1st training 33 5 0.750 0.453  
2nd training 17 10 0.976 0.543  
3rd training 14 9 0.990 0.536  
4th training 11 9 0.995 0.477  
5th training 13 9 0.993 0.534  
6th training 12 8 0.992 0.532  
7th training 10 4 0.753 0.375  
8th training 11 8 0.993 0.534 *✓ 
9th training 9 5 0.873 0.380  

*✓: selected model for CO prediction. 

The final model for predicting CO using BFG-PM included 11 variables: GAH_OUT-
LET_AIR_TEMPERATURE, GAH_OUTLET_GAS_TEMPERATURE_A, FLUE_GAS_IN-
LET_TEMPERATURE, FLUE_GAS_OUTLET_TEMPERATURE, STACK_GAS_TEMPER-
ATURE, STACK_O2, MAIN_STEAM_FLOW, BFG HEAT INPUT, FOG HEAT INPUT, 
COG HEAT INPUT, and TOTAL AIR FLOW after eight training sessions, and has a vari-
able independence of 0.993 and model reliability of 0.534.  

For judging the relevance of the final BFG-PM O2 model, the data within or outside ± 
350 ppm of error in the CO amount were distinguished between the measured and pre-
dicted values of the model, with a reliability of 53.4%. As a result, 90.09% of the predicted 
values, or 9869 of 10,955 ea, were within the standard. Table 9 presents the performance 
of the eighth BFG-PM model in predicting the CO. 

Table 9. CO prediction result of BFG-PM. 

Category CO Prediction 
R2Y 0.534 

Acceptance criteria CO gap between actual and prediction ± 350 ppm 
Result 90.09% 

Within standard 9869 ea 90.09% 
Out of standard 1086 ea 9.91% 

Total 10,955 ea 100% 

The CO prediction using the BFG-PM matched the measured values (53.4%). Com-
pared with the O2 prediction, the scaĴer distribution was larger, and the prediction accu-
racy was less effective. The combustion state for boiler combustion control was deter-
mined based on both O2 and CO values. However, most combustion control supply com-
bustion air is only based on the O2 value, where the CO value is applied as a secondary 
auxiliary indicator. Although the predicted values were inadequate, the CO values were 
utilized in the boiler combustion control in this study because 90.09% of the data were 
within a 10% margin of error. 

5.3. Discussion 
The amounts of O2 and CO contained in the flue gas must be accurately measured to 

determine the combustion state during the boiler combustion process. Thus, this study 
developed a BFG-PM using an ML-based PLSR algorithm to overcome the measurement 
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limitations. The amounts of O2 and CO in the flue gas were predicted, and the prediction 
accuracy of the final model was improved through training.  

The goodness-of-fit of variable X, computed using the BFG-PM O2 model, was 0.992, 
demonstrating a high correlation between the selected variables. Accordingly, the good-
ness of fit of variable Y had an excellent prediction accuracy of 0.832. The model showed 
an accuracy of 90.89% with a ± 0.25% margin of error for O2. The goodness-of-fit of variable 
X in the BFG-PM CO model was 0.993, which was appropriate. However, the goodness-
of-fit for variable Y was 0.534, which indicates inadequate prediction accuracy, and the 
scaĴer distribution graph of the correlation showed a wide dispersion. This can be at-
tributed to insufficient outlier removal during data preprocessing.  

The finally selected BFG-PM CO model showed a large scaĴer distribution. This is 
analyzed due to the decrease in accuracy caused by a large amount of data loss during 
outlier removal. It was challenging to minimize data loss in the preprocessing process of 
this study. Outlier removal is a critical process for improving the performance of a model, 
but it can lead to data loss. In particular, sensor data for predicting the condition of power 
generation equipment often contains a lot of noise, making it more likely that data loss 
will occur during outlier removal. Further research is needed for minimizing data loss 
during outlier removal in the future. This may involve improving the performance of out-
lier removal algorithms or developing methods to compensate for data loss during outlier 
removal. Alternatively, it is necessary to acquire a large amount of data so that the accu-
racy is not affected, even if data loss occurs. By acquiring a large amount of data, the de-
crease in accuracy caused by data loss can be offset. 

Considering the nature of generators, unit commitment rarely occurs, and the oper-
ation is continuous, where the measured values do not exhibit noticeable fluctuations. 
However, if there is significant variation in the data, it is more reasonable to inspect the 
equipment’s state because the operating conditions may have changed instead of experi-
encing noise. Therefore, the high CO values observed during data preprocessing were not 
removed because they were considered to have been caused by incomplete combustion. 
The analyzer CO values varied substantially from 30–6250 ppm, whereas the BFG-PM 
model predicted 30–3400 ppm. The sharp increase in the measured CO value was at-
tributed to the peak owing to noise rather than the effect of incomplete combustion. Fur-
thermore, CO values were not consistent within a specific range but varied across all 
ranges. Thus, the sensitivity of the predicted values was higher than that of O2, which 
fluctuated less. If the operation continued with a CO value of 300–1000 ppm, even in the 
combustion state, complete combustion was considered to have occurred. However, the 
minimum and maximum values differed by at least three-fold. It was deemed sufficient 
to be utilized in combustion control if the model’s predicted value was within the proper 
margin of error, even if the measured and predicted values did not match perfectly. Ulti-
mately, the model demonstrated an accuracy of 90.09% within ±350 ppm margin of error 
for CO. The accuracy of the O2 and CO values is vital in general. Still, the model’s predic-
tion performance of 90% was fairly accurate, considering the fact that the most challenging 
issue was the difficulty in checking the boiler combustion state owing to abnormal values, 
such as peak values, decreased reception rate, and frequent malfunction of analyzers. 
Therefore, the values predicted by the BFG-PM can be substituted if the boiler flue gas 
analyzer breaks down or the reliability is decreased. 

6. Combustion Efficiency Optimization 
6.1. Select the Boiler Combustion Efficiency Calculation 

In Section 7, this study deduced the points at which efficiency was maximized based 
on the prediction model of O2 and CO in the flue gas, which are major factors in the boiler 
combustion control. Thus, the boiler efficiency must be calculated using an in–out method 
or a heat loss method, both commonly used [43]. The in–output method is relatively sim-
ple. Still, it is easily affected by errors in the analyzers and is less accurate. In contrast, the 
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heat loss method is more complicated but less affected by errors in the analyzers and is 
highly accurate. Hence, the heat loss method, which is standardized in ASME PTC4.0, was 
adopted for the efficiency calculation equation for boiler combustion efficiency optimiza-
tion [44]. Most industries inspect boiler performance using procedures recommended by 
the ASME [45]. Considering how efficiency loss factors are categorized into eight types, 
that each loss rate is taken into account when calculating the overall efficiency, and that 
the method is not directly affected by measurement errors of calorific value and flow rate, 
it was deemed appropriate for calculating the efficiency of a generator boiler operating in 
the adverse environment of company P. Figure 10 illustrates the measured elements re-
quired for the heat loss method.  

 
Figure 10. Heat loss method for boiler performance test. 

Equation (2) was used for calculating efficiency by reflecting the boiler efficiency loss 
factor.  

% Eff. = 100 − (L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8) (2)

To calculate the boiler combustion efficiency, 12 variables, including GAH out-gas 
temperature, O2, CO, CO2, ambient temperature, humidity in the air, BFG calorie, COG 
calorie, FOG Calorie, BFG flow, COG flow, and FOG flow, were needed to calculate the 
heat loss of each item. All variables could be verified and applied through real-time data, 
but O2 and CO values were predicted using BFG-PM. Table 10 presents the detailed equa-
tions for heat loss calculations. 

Table 10. Equations for heat loss calculations. 

Loss Calculation Equations 

Loss 1, Dry exhaust heat loss 

((0.981790389084853×B12 − 0.82499216637857×B13 + 0.905867445657761×B14) + (1 
+ B4/(21 − B4))×(0.595123830015147×B12 + 11.3028230711785×B13 + 
1.04479223434223×B14))×(1.38906921002696×B12 + 0.492352550459239×B13 + 
1.38823214285714×B14)×(B3-B7)/((B12 + B13 + B14)×(B9×B12 + B10×B13 + 
B11×B14))×23 

Loss 2, Water in fuel - 

Loss 3, Water from combustion 

4.05×(0.201568899331099×B12 + 20.263286732307×B13 + 
1.04449389639958×B14)/(B12 + B13 + B14)×(B3B7)/((B9×B12 + B10×B13 + 
B11×B14)/(1.38906921002696×B12 + 0.492352550459239×B13 + 
1.38823214285714×B14)) 
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Loss 4, Moisture in the air 

(1 + B4/(21 − B4))×(59.512383006586×B12 + 1130.28230712112×B13 + 
104.479232322713×B14)/(B12 + B13 + B14)×B8×0.45×(B3 − B7)/((B9×B12 + B10×B13 + 
B11×B14)/(1.38906921002696×B12 + 0.492352550459239×B13 + 
1.38823214285714×B14)) 

Loss 5, Incomplete combustion 

B5/(B5 + B6)×(18.6804298424681×B12 + 43.3664332479575×B13 + 
27.9736561145342×B14)/(B12 + B13 + B14)×5744/((B9×B12 + B10×B13 + 
B11×B14)/(1.38906921002696×B12 + 0.492352550459239×B13 + 
1.38823214285714×B14)) 

Loss 6, Radiation 0.50 
Loss 7, Unburned carbon in fly ash - 
Loss 8, Unburned carbon in bot ash - 

6.2. Efficiency Optimization 
The fact that boiler efficiency was highly correlated with O2 and CO values, which 

indicates the combustion state, is already known, where only O2 and CO were the pre-
dicted values instead of the measured values among the variables used for calculating the 
efficiency. Therefore, the O2 and CO values resulting in the highest boiler efficiency could 
be deduced by applying the O2 and CO prediction BFG-PM model created using the PLSR 
algorithm to the given boiler efficiency calculation equations. For this purpose, the two 
predicted variables for calculating the boiler efficiency were replaced with a single varia-
ble to obtain a single variable value where the boiler efficiency was maximized. This pro-
cess involved replacing CO in the relation equation between the BFG-PM O2 model and 
the BFG-PM CO model, and the value was substituted into Equation (2) to deduce the O2 
value at which the efficiency is maximized. The relationship between the two models was 
replaced with CO because O2 becomes the first criterion for determining the combustion 
state. The relationships between the models were identified using the Generalized Re-
duced Gradient (GRG) method in MS Excel (Equation (3)). 

Y = 8000 × 10ି.ଽଶଡ଼ (3)

where  
Y represents CO ppm  
X represents O2%. 

The optimal combustion control value was deduced by linking the relationship be-
tween the predicted O2 and CO values and boiler efficiency. The minimum output of the 
generator was set to at least 70% operation. The reason for determining the O2 and CO 
control values that resulted in optimal combustion was to ensure that the boiler efficiency 
was optimal by operating the generator with each control value. Consequently, the boiler 
efficiency was optimal (89.81%) when O2 was 1.4–1.6%, and CO was 454–372 ppm. Table 
11 presents the operating conditions that induce optimal boiler efficiency or predicted O2 
and CO values with respect to the by-product gas usage ratio of BFG 24%, FOG 68%, and 
COG 7%. 

Table 11. Boiler efficiency according to O2 and CO condition. 

O2 prediction 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.5 1.6 1.8 2.0 2.2 2.4 
CO prediction 1508 1234 1011 827 677 555 454 411 372 304 249 204 167 

%Eff 89.43 89.56 89.65 89.72 89.76 89.79 89.81 89.81 89.81 89.80 89.78 89.76 89.73 

The boiler combustion efficiency was optimized by considering each variable gath-
ered in real-time in the boiler efficiency calculation equation based on the heat loss method 
and applying Equation (3) obtained using BFG-PM O2 and BFG-PM CO. Based on this, a 
boiler efficiency calculation formula was developed to facilitate easy real-time monitoring 
of the optimal O2 and CO values during operation. Building on this foundation, a power-
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generation efficiency management system was developed. This system was based on 
JAVA programming and was embedded in Company P’s MES to serve as guidance for 
optimizing the boiler combustion efficiency.  

Figure 11 shows the user interface (UI) of the power generation efficiency manage-
ment system developed in this study. The current operational state was displayed when 
generator no. 11 was selected in the UI. The current output, the amount of low-pressure 
steam produced, and real-time measurements of O2 and CO were displayed. The O2 and 
CO values predicted using the BFG-PM model are provided, along with how the boiler 
efficiency changes when the current predicted O2 and CO values are adjusted to the values 
suggested in the guidelines. The boiler efficiency curvature is shown to help understand 
this relationship more intuitively. Therefore, it helps determine how to adjust the O2 value 
and the extent to which the boiler efficiency is improved accordingly.  

When the O2 value was 1.09% during operation, the boiler heat loss was 11.4%, 
whereas adjusting the O2 to 1.40% reduced the boiler heat loss to 10.96%. As a result, the 
guidance indicates a 1.81% increase in boiler efficiency (Figure 11). 

 
Figure 11. User interface of power generation efficiency management system. 

7. Site Application for Case Study 
In Section 8, the optimal operation points deduced using the BFG-PM model and the 

boiler efficiency calculation equation were applied to the equipment in operation to ex-
amine whether they operated adequately. Because the BFG-PM was explicitly developed 
for the characteristics of generator no. 11, the optimal boiler combustion efficiency opera-
tion system was applied to generator no. 11.  

7.1. Simulation for Combustion Control 
The simulation was performed using the data of three random days, where the out-

put of generator no. 11 was the highest, and the operation was stable, but it was not used 
for training and validation of the model. The selected dates were 15 February 2019 and 10 
May 2019, when the TDLS O2 analyzer malfunctioned, and 29 August 2019, when the an-
alyzer operated normally; the data for 24 h were collected every 10 min. 

The boiler efficiency can be optimized. First, the similarity between the measured and 
predicted values was examined using raw data to explore the extent of model completion 
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visually. If the O2 operation range that maximized the boiler combustion efficiency was 
guided to be 1.4–1.6% according to the operation state and data analysis, the predicted 
values were adjusted accordingly. Finally, whether the predicted O2 and CO values 
matched the guidance values was verified according to the O2 operation range adjustment, 
during which the boiler combustion efficiency improvement was examined. 

In the first simulation, the goodness of fit of the measured and predicted O2 values 
was explored visually. Figure 12a shows the measured, predicted, and guidance values of 
O2, where a similarity between the measured and predicted values was observed. In ad-
dition, the predicted O2 value was 0.7% lower than the guidance value for ensuring opti-
mal boiler combustion efficiency. Therefore, the predicted O2 value increased by 0.7% and 
then decreased at 670 min, when the predicted O2 value was higher than the guidance. 
Finally, it increased by 0.2% at 1040 min when the predicted O2 value was lower than the 
guidance value. Figure 12b shows the result of adjusting the predicted value according to 
O2 guidance. Figure 12c shows the results of operating the system according to O2 guid-
ance, where the predicted CO value also followed the guidance, in which the average CO 
value decreased from 1078 ppm to 318 ppm. Based on the operational guidance, the boiler 
combustion efficiency was improved by an average of 0.20% and a maximum of 0.37% 
(Figure 12d). 

 
(a) 

  

 
(b) 

 

 
(c) 
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(d) 

Figure 12. Final simulation test with the data on 29 August 2019: (a) Raw data for simulation test; 
(b) Adjustment of predicted O2 value for O2 guidance value; (c) Changed predicted CO value for 
CO guidance value; (d) Boiler efficiency increase as O2, CO optimization.  

In the second simulation, the similarity between the measured and predicted values 
could not be verified because the O2 sensor malfunctioned. Because an O2 gap of 0.7% 
existed between the predicted and guidance values, the predicted O2 value increased by 
0.7%, and the predicted O2 value was higher than the guidance value at 430 min, decreas-
ing by 0.4%. The value was adjusted to 0.2% at 910 min because the predicted O2 value 
was lower than the guidance value. Based on the virtual sensor, the average CO value 
decreased from 791 ppm to 307 ppm, while the boiler efficiency increased by 0.13% on 
average and 0.45% at maximum.  

In the final simulation, the similarity between the measured and predicted values 
could not be verified because of a malfunction in the O2 sensor. Because an O2 gap of 0.7% 
existed between the predicted and guidance values, the predicted O2 value was increased 
by 0.7%; subsequently, the value was adjusted by 0.2% at 610 min because the predicted 
O2 value was lower than the guidance value. Consequently, the average CO value de-
creased from 772 ppm to 256 ppm, while the boiler efficiency increased by 0.14% on aver-
age and by 0.31% at maximum. 

A combustion control simulation was performed according to O2 guidance, maxim-
izing boiler efficiency. Consequently, the CO value matched the guidance value (the opti-
mal operation point) when the predicted O2 value reached the guidance value. The boiler 
efficiency increased by 0.13% on average and by a maximum of 0.20%.  

7.2. Site Application and Result 
The response and accuracy of the boiler combustion control based on the predicted 

O2 value were verified using simulation. The site application was carried out under the 
following conditions: the supply and demand balance was stable because the steel mill 
consumed less power than the power supply; the power generation output of generator 
no. 11 was maintained above 70%, while the fuel usage ratio was set to BFG 24%, FOG 
68%, and COG 7%. On 13 December 2019, the site application date was selected as it met 
the required conditions; a zirconia O2 analyzer was used instead of the TDLS O2 analyzer, 
which did not function properly. The application time was one hour, and manual opera-
tion was applied to respond to trips caused by an unexpected clash between the system 
and the generator; a period of one hour was approved by the generator manager, consid-
ering a significant loss and the impact on the steel mill operation in the case of abnormal-
ity. 

Once the site application began, the adjustment of the O2 value for boiler combustion 
efficiency optimization was checked. To meet the guidance value of 1.6%, the O2 value 
predicted by the BFG-PM was adjusted by +0.3% from 1.3%; the SV adjustment using the 
zirconia analyzer was enabled at 13 min for combustion control, and the operation mode 
was changed from remote to manual. Because the O2 present value of the current analyzer 
was 2.6%, the set value automatically changed from 2.0% to 2.6% and then remained sta-
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ble. The O2 value needed to be adjusted by +0.3% 20 min after the test started for the opti-
mization of the boiler combustion efficiency; thus, the analyzer O2 set value was increased 
by 0.3%, but the present value did not respond immediately and operated nearly at the 
set value after 10 min. That is, the fuel and combustion air inside the boiler were burned 
according to the desired O2 target value. Furthermore, the O2 value predicted by the BFG-
PM was operated at 1.3–1.4%, but optimal combustion control was aĴained after 10 min 
when the value reached 1.5–1.6%, similar to the guidance value.  

Figure 13 shows the results of the site application tests. When the efficiency was an-
alyzed by applying the system to optimize the boiler combustion efficiency, it improved 
by +0.29%, from 88.27% to 88.56%, on average. Figure 13 shows the efficiency improve-
ments based on the site-application test. 

 
(a) 

 
(b) 

Figure 13. Site application for boiler combustion efficiency optimization with BFG_PM O2, CO: (a) 
The process of boiler combustion control with O2; (b) Change in the boiler efficiency. 

This study presents the following distinctive features. O2 and CO control points were 
deduced to optimize boiler combustion efficiency and verify efficiency improvements. 
Theoretically, the maximum and minimum boiler efficiencies differed by 0.38%, depend-
ing on the operating ranges of O2 and CO. However, the efficiency level differed by 0.83% 
after site application. This is aĴributable to changes in other conditions, such as an adjust-
ment in the steam production amount or power generation output. This study differs from 
other studies in that it applies the research outcomes to generators operated at a steel mill 
rather than quantitatively comparing how much efficiency has improved. Previous stud-
ies have been conducted on improving efficiency through boiler combustion control using 
ML, but no studies have applied the system to power generators. 

8. Benefits Analysis 
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In this section, we calculated the financial impacts of site improvements. This study 
developed a model for predicting O2 and CO in boiler flue gas. The efficiency calculation 
equation was utilized in the boiler to deduce the amounts of O2 and CO that would enable 
boiler operation with optimal efficiency. A quantified boiler efficiency improvement was 
the first observed effect. The overall power generation efficiency improved when the 
boiler efficiency was improved, whereas the amount of power generated could be in-
creased by using the same amount of adequate fuel. Increased power generation would 
reduce the amount of power purchased from external sources, thus lowering Company 
P’s external energy purchase cost. Reducing power consumption also leads to a decrease 
in greenhouse gas emissions. Therefore, quantitative effects were calculated based on the 
78-min-long data from 13:19 to 14:36 on 13 December 2019, when the site application took 
place, to compute the financial impact. 

The most noticeable effect is a decrease in power purchase costs resulting from in-
creased power generation output and a reduction in externally purchased power owing 
to boiler efficiency improvement. The boiler efficiency improved by 0.29% when the O2 
and CO values were set to the guidance values during operation to optimize the boiler 
combustion efficiency. If the 0.29% efficiency improvement is multiplied by the average 
power generation amount of 89 MW of generator no. 11 and then multiplied by 24 h, the 
daily power generation amount increases by 6.2 MWh. The amount of power generated 
increases by 2161 MWh annually if an average operation rate of 96% over 365 days is re-
flected. To convert the reduction in the amount of received power to a reduction in pur-
chase cost, the average monthly expense and the hourly charge of industrial power at high 
pressure among the standard charges of the Korean Electric Power Corporation (KEPCO) 
in January 2023 were reflected as the unit cost of received power [46]. The cost of receiving 
1 kWh of power was USD 0.1 on average. If this amount is reflected in the amount of 
increased power (+2196 MWh), approximately USD 217,000 (KRW 2.74B) could be saved 
annually (as of 1 January 2023). 

The financial impact of reducing greenhouse gas emissions was calculated by multi-
plying the annual amount of increased power generation due to efficiency improvement 
by the greenhouse gas emission coefficient and then multiplying the result by the unit 
price of emission trading. CO2eq, which includes CO2, CH4, and N2O, was used as the 
greenhouse gas emission coefficient of the generated power, whereas the emission market 
closing average in 2022 was applied as the unit price of emission trading. Consequently, 
approximately USD 19,700 (KRW 0.25B) could be saved annually. Table 12 presents the 
results of calculating the quantitative effects based on the operational status data of gen-
erator no. 11. 

Table 12. Cost calculation for benefit (as of 1 January 2023). 

Category Calculation Result 

Energy cost 89 MW × 0.29% × 24 h/day × 365 day/year × 96% × 1000 kWh/MWh × USD 
0.1/kWh = USD 217,000/year (KRW 2.74B/year) 

The cost of emission 
trading 

89 MW × 0.29% × 24 h/day × 365 day/year × 96% × 0.4781 tCO2eq/MWh × 
USD 19/* tCO2eq = USD 19,700/year (KRW 0.25B/year) 

* ton of CO2 equivalent. 

9. Summary 
9.1. Conclusions and Contributions 

This study used ML data analysis and deduced systematic improvements to reduce 
the cost of purchasing power from external sources by increasing the power generation 
output and optimizing the boiler combustion efficiency at company P. The improvement 
target for increasing the power generation output was limited to the boiler, and boiler 
efficiency was improved through combustion control. First, a total of 593,955 data points, 
in which 361 features were stored for a year, were extracted to develop the model, the 
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extracted data were preprocessed, and derived variables were generated to ensure that 
the data were more appropriate for modeling. Subsequently, the PLSR algorithm was se-
lected, which was suitable for data characteristics and target values. Training and fine-
tuning were carried out to choose the final variables. As a result, the BFG-PM model ap-
propriate for O2 and CO predictions was created. The final model accurately predicted 
more than 90% of the data within a 10% error margin, as the relevant standards suggested. 
Therefore, the predicted O2 and CO values were considered reliable. The boiler combus-
tion efficiency was optimized using the BFG-PM model, which was developed to replace 
the inaccurate sensing of boiler flue gas O2 and CO analyzers.  

A boiler efficiency calculation equation was required, for which the commonly used 
ASME PTC4.0 was applied. The O2 and CO values at which boiler efficiency was maxim-
ized were deduced by applying the O2 and CO model relationship equation to the effi-
ciency calculation equation. Data were provided on how much the boiler efficiency im-
proved if the O2 value was adjusted according to the guidance when the boiler was oper-
ated based on the current boiler flue gas O2 and CO predicted values. To examine the 
changes in efficiency when the boiler was operated according to the guidance, a power 
plant boiler in an online state was tested at the site for one hour; as a result, the boiler 
efficiency improved by 0.29%, and the power generation output increased by 258 kW. 

This study makes the following contributions. First, ML was used to predict the O2 
and CO concentrations in the flue gas and optimize the efficiency of a power plant boiler. 
Second, the flue gas O2 and CO values at which the power plant boiler operated with high 
efficiency were examined with respect to changes in the flow rate and calories of the 
power-generation fuel. Finally, the models developed in this study and the optimized 
boiler efficiency points were systematized and applied in the operational field, utilizing 
them as guidance to enhance the efficiency of boilers during operation.  

Additionally, this study contributes to standardizing boiler operation theory. By ap-
plying the developed models to the operational field and calculating their economic im-
pact, this study provides valuable information that can contribute to energy conservation 
and cost reduction. Moreover, this study has implications regarding the financial benefits 
resulting from the increased efficiency of power generator 11 and qualitative senses. The 
reduction in greenhouse gas emissions through improved power generation efficiency is 
a non-financial element of a company; rather, it corresponds to environmental, social, and 
governance (ESG) management practices for the sustainable development of a company. 
Accordingly, the company’s brand image can be enhanced. By automating the boiler flue 
gas O2 control, the workload of the operator is reduced while improving the operational 
efficiency of a junior operator. The produced effects will be more excellent if the BFG-PM 
model is designed according to the characteristics of other steam generators and if boiler 
combustion optimization is expanded even further. Multiple sensors need not be installed 
to measure O2 and CO in the boiler flue gas accurately, and the number of O2 and CO 
analyzers installed at multiple combustion facilities operating at company P can also be 
minimized. 

9.2. Limitations and Future Works 
In this study, a boiler flue gas O2 and CO prediction model was developed, and the 

boiler combustion efficiency optimization points for generator no. 11 were deduced and 
verified. However, there are certain limitations in creating a flue gas CO prediction model 
and its accuracy. These limitations are mostly aĴributable to the nature of the by-product 
gas, which is the power-generation fuel used in steel mills. A large amount of dust in the 
by-product gas causes sensors to malfunction, which ultimately affects the collected data. 
Therefore, dust must be removed from the by-product gas before a highly reliable flue gas 
prediction model can be developed. In addition, the model’s completion level will increase 
if research can be conducted in a state where the calories and flow rate of the fuel are 
stable. Horizontal deployment to other steam generators is limited because different fuel 
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types are used for each type of generator. Applying the BFG-PM model requires an addi-
tional review, even if the same kind of fuel is used because each piece of equipment has 
different sizes, specifications, and operating conditions. 

ML technology may appear to be an all-around solution for various problems in the 
era of the Fourth Industrial Revolution. However, the practical implementation of such 
cuĴing-edge technology often presents challenges owing to a lack of trust, causing exist-
ing operators to contemplate its adoption and hindering its enthusiastic application. The 
reasons for this are as follows. First, even if the equipment efficiency is slightly lower, the 
stable operation of power generation facilities can be maintained with a consistent com-
bustion air supply. Consequently, there is resistance to embracing changes. Second, alt-
hough using ML for operation can enhance boiler efficiency, it is essential to account for 
unforeseen risks. Although efficiency gains are possible, there is a need to balance them 
against threats that have not been experienced. Finally, introducing new technology into 
commercially operated power generation facilities is often met with skepticism. Engineers 
often hope that ML technology will be proven in terms of performance and stability in 
other commercial facilities before considering its application to their equipment. They 
were not inclined to have their equipment become a testing ground for new technology 
and particularly wished to avoid their equipment becoming a pilot plant for untested 
technology. Therefore, the verification of new technologies in different setups is preferred 
before their full implementation. 

The following aspects should be reviewed to overcome the limitations of boiler com-
bustion efficiency optimization. Further investment is needed in facilities for removing 
the dust contained in fuel to minimize the malfunction of sensors and improve the CO 
prediction accuracy of the BFG-PM model. The CO prediction accuracy must be improved 
by removing outliers of CO values through preprocessing and by selecting other variables 
for modeling. Additionally, the efficiency of the entire generator must be increased by 
optimizing the boiler combustion efficiency for facilities other than the POC. 
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BOP Balance of plant 
CFD Computational Fluid Dynamics 
CNN Convolutional neural network 
COG Coke oven gas 
DBN Deep belief network 
ESG Environment, Social, Governance 
FOG FINEX off gas 
GA Genetic Algorithm 
GAH Gas Air Heater 
GP Gaussian Process 
IoT Internet of things 
KNN K Nearest Neighbors 
LDG Linz-donawiz converter gas 
LSFLN Least Square Fast Learning Network 
LS-SVM Least-Squares Support Vector Machine 
LSTM Long Short-Term Memory 
MES Manufacturing Execution System 
ML Machine Learning 
NSGA Non-dominated Sorting Genetic Algorithm 
PLS Partial Least Square 
PLSR Partial Least Square Regression 
PTC Performance Test Code 
SVM Support Vector Machine 
TDLS Tunable Diode Laser Spectrometer 
VIP Variable Importance in Projection 
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