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ABSTRACT: High-accuracy oxygen content measurement and control is one key to
improving combustion efficiency and economic efficiency. The soft measurement
technique of the oxygen content based on flame images is promising. However, image
feature acquisition at different oxygen contents and image generation under unbalanced
conditions are still challenging. To relieve this dilemma, a new generative-based regression
model is developed. It not only learns the potential vectors but also captures flame features
well to generate virtually high-quality-labeled flame images. The training data sets can be
augmented, thus saving a lot of data collection experiments. Subsequently, a
convolutional-based regression model is constructed to estimate the oxygen content
using the augmented flame images directly. The designed method generates informative
flame images and obtains more accurate oxygen content estimation results than several
common methods.

1. INTRODUCTION
Furnace combustion flames generated by the convective heat
transfer between fuel and gas are used to heat the process fluid.
The suitable oxygen content is extremely important for
combustion during operation. A too high oxygen content
would result in significant oxygen consumption and energy loss
as well as increased emissions of nitrogen oxides and other
pollutants. In contrast, a too low oxygen content would lead to
incomplete chemical reactions, accelerated fouling of the
equipment, and an impact on the final yield. The combustion
oxygen content is closely related to the efficiency of the entire
heat exchange process as well as the operational safety of the
equipment. High-precision and real-time oxygen content
measurement technology is an important support to accomplish
combustion oxygen content control. However, the measure-
ment accuracy of oxygen content analyzers is susceptible by the
location of the sampling point and the measurement lag.1

Moreover, the costs of the purchase and maintenance are high.
Poor measurement performance limits the effectiveness of
oxygen concentration control and is not conducive to improving
efficiency.
Recently, the rapid development of deep learning and image

processing methods has brought great changes to the
industry.2−7 Compared with the various limitations of physical
measurement instruments, deep-learning-based soft measure-
ment technology of combustion oxygen content is becoming a
hot topic for researchers. The input data to the soft sensors in
refs 8−10 are the process variables of the combustion system.
This requires the construction of data sets by combining
measurements from multiple sensors.

Several studies11−13 have shown that valuable information
about the current combustion process can be presented from
flame images taken online. This provides a new idea for
combustion oxygen content measurement, that is, designing soft
sensors based on flame images. A deep belief network was
conducted in ref 1 to extract important features from flame
images. Furthermore, the oxygen content was estimated. A more
efficient method to acquire oxygen content directly from the
images was proposed.14 The high accuracy of the estimation
relies on the high quality of the flame image sets, especially the
high coverage of the combustion conditions as well as the
uniform distribution. In practice, flame images under special
combustion conditions are scarce and need to be captured by
conducting specialized experiments, which is costly.
Generative adversarial networks (GANs)15−19 show promis-

ing performance in generating images. The outstanding
applications include satellite image sequence prediction,20

dose prediction in radiotherapy,21 and a purified terephthalic
acid solvent system.22 In the field of combustion flames, a
conditional GAN was used in ref 23 to predict a two-
dimensional soot signal. A hybrid model based on visual
information from RGB images was proposed in ref 24 for
flashover prediction. One highlight is that the dual-attention
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GAN is developed to convert the image information into indoor
temperature information. A regression GAN with gradient
penalty (RGAN-GP) was presented in ref 14 for the imbalanced
image-based soft sensing. The continuously changing features of
labeled samples place higher demands on the performance of
flame image generation models.
Autoencoder is a commonly used feature extraction technique

that can compress input data into potential vectors through an
encoder and learn its features. To improve the performance of
the original Autoencoder, several variants have been proposed,
such as sparse Autoencoder,25 denoising Autoencoder,26 and
variational Autoencoder (VAE).27 The denoising Autoencoder
network was trained in ref 28 to extract important features of
flame images. On this basis, different combustion states in the
furnace are predicted. VAE can be used as a generative model
because it greatly guarantees the quality of its reconstructed
data.27 VAE-GAN, which combines the characteristics of VAE
and GAN, can generate more realistic samples after adversarial
training.29 Wasserstein GAN with gradient penalty (WGAN-
GP) was combined with VAE to obtain VA-WGAN, which can
supplement high-quality samples for the established soft sensor
model.30

Here, a method integratingWasserstein loss-based Generative
models and a Convolutional neural network (CNN) for online
Estimation (WGCE) is proposed. The innovative points are as
follows:

1. A WGCE method consisting of VA-WGAN and CNN is
presented for oxygen content estimation. High-precision
estimation performance of the WGCE can still be
guaranteed under imbalanced data sets.

2. The designed VA-WGAN can better capture information
on flame images with different oxygen content values, thus
providing more realistic samples for minority intervals
and completing the data set enhancement.

3. The designed CNN model can estimate the combustion
oxygen concentration accurately directly from flame
images.

2. PROPOSED METHOD
The proposed WGCE for imbalanced flame image oxygen
content estimation consists of two parts: a VA-WGANmodel for
data augmentation and a CNN regression model for oxygen
content estimation.
2.1. VA-WGAN Data Augmentation. To generate high-

quality flame images, the VA-WGANmodel is given in Figure 1.
The structure and parameters of VA-WGAN are shown in Table
1. Both the encoder and discriminator have three convolutional
layers and one fully connected layer. The decoder contains three
deconvolution layers. For all convolutional and deconvolution
layers, the convolution kernel size is 5. The step size is set to 2.
Leaky-ReLU, ReLU, and Leaky-ReLU are selected as the
activation functions of the hidden layers of the encoder, decoder,

Figure 1. Structure of VA-WGAN.
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and discriminator, respectively. The encoder and discriminator
use the layer normalization standardization method, while the
decoder uses the batch normalization standardization method.
The condition variable y is expanded to a vector with sizeW×H
× 1 and embedded into every layer of the VA-WGAN model,
except for the input layer. W and H represent the width and
length of the embedded feature layer, respectively.
The loss functions of the VA-WGAN can be calculated as

follows:

(1)

(2)

(3)

where x, y, and z are the raw data, conditional variable, and latent
vector, respectively. q(z | x)represents the probability
distribution of z | x ∼ N(0,1). p(z | y) denotes the true
distribution of z | y. ∥ denotes the calculation of the Kullback−
Leibler divergence31 for q((z | x) | y) and p(z | y). x | z∼N(μ(z),
σ(z)). μ(z) and σ(z) are the means and variances of the
Gaussian distribution corresponding to z, respectively. E
denotes the expectation. The distributions of real and generated
data are denoted as Pr and Pg, respectively. xr and xg represent
real samples and generated samples, respectively. f() represents
the output of the discriminator. xp is the sample generated after
random noise is input to the decoder. Pk is the sample
distribution generated by passing x through the encoder and
decoder. x̂ is a linear interpolation of xr and xg. λ is the gradient
penalty coefficient. ∥∇x̂ f(x̂)∥2 is the 2-norm of the gradient.
LVAE, LWGAN, and LVA−WGAN are the loss functions of VAE,
WGAN, and VA-WGAN, respectively. ω is the weighting factor.
The training process of VA-WGAN is given in Algorithm 1.

Table 1. Structure and Parameters of the VA-WGAN

composition encoder decoder discriminator

structure three convolutional
layers and one fully
connected layer

three
deconvolution
layers

three convolutional
layers and one fully
connected layer

activation
function

Leaky-ReLU ReLU Leaky-ReLU

normalization layer batch layer
learning rate 0.0002
epochs 5000
optimizer Adam
step size 2
convolution
kernel size

5

Figure 2. Designed structure for estimation of combustion oxygen content.
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2.2. CNN-Based Regression Model. To realize the
estimation of oxygen content, a CNN regression model that
directly uses flame images as input is shown in Figure 2. The
model has two convolutional layers, two pooling layers, and two
fully connected layers. The kernel size, step size, and activation
functions of the convolutional layers are 5, 1, and ReLU,
respectively. The convolution kernel size of pooling layers is the
same as convolutional layers, but the step size is 2. All hidden
layers of fully connected layers use ReLU activation functions.
Algorithm 2 presents the detailed training process.

The designed structure for the estimation of the combustion
oxygen content is given in Figure 2. The VA-WGAN is
responsible for expanding the samples in minority intervals to
obtain balanced data sets. Subsequently, the CNN is trained
using the obtained data sets. After the training, the CNN can
estimate the combustion oxygen concentration values depend-
ing on the flame images.

3. EXPERIMENTAL ARRANGEMENT
3.1. Furnace Flame Image Experimental System. The

system has a 5514-6 burner, which can reach 451,000 kcal/h.
The industrial heavy oil and air required for combustion come
from the fuel tank and the air compressor, respectively. During
combustion, the flame images are captured with a resolution of
658 × 492 pixels through an 18.5 cm-diameter window in the
furnace wall. The flue gas analyzer is equipped with the ability to

monitor the oxygen content in real time. The captured flame
images and the oxygen content measurements are recorded by a
time stamp. Figure 3 gives the composition of the entire
experimental system.

Relying on this system, 8512 flame images with oxygen
concentration labels were acquired. To reduce the computa-
tional complexity, the flame images are compressed to three-
channel images with 100 × 100 size. Subsequently, the data sets
were grouped into 11 intervals, as shown in Table 2 according to
oxygen concentration labels. For each interval, the ratio of
training samples to test samples is 7:3.

3.2. Scheme and Evaluation Criteria. 3.2.1. Scheme.The
designed VA-WGAN model of the WGCE is applied for the
generation of samples in minority intervals, thus solving the
problem of imbalanced training data sets. For the training of VA-
WGAN, the learning rate and epochs are 0.0002 and 5000,
respectively. Afterward, the original imbalanced data sets are
expanded via the generation ability of the trained VA-WGAN.
Sequently, the CNN-based regression model is trained, with the
learning rate and epochs of 0.001 and 400, respectively. The
Adam optimizer is used for both pieces of training. The Python
codes of the proposed WGCE method are available at GitHub
(https://GitHub.com/GaussG/WGCE.git).
Several recent methods, including the VAE,27 VAE-GAN,29

WGAN-GP,32 and RGAN-GP,14 are implemented to generate
flame images for minority intervals and compared with the VA-
WGAN. Additionally, partial least squares (PLS)2 and support
vector regression (SVR)1 are used for oxygen content estimation
and compared with the CNN regression model.

3.2.2. Evaluation Criteria. The root mean square error
(RMSE), relative improvement performance (RIP), and

Figure 3. Furnace flame image experimental system: 1�computer, 2�
flue gas analyzer, 3�camera, 4�furnace, 5�air compressor, and 6�
fuel tank.

Table 2. Detailed Datasets with 11 Intervals

interval oxygen content (%) number of samples

1 7.15−7.22 725
2 6.73−6.88 847
3 6.26−6.39 847
4 5.74−5.88 856
5 5.16−5.32 481
6 4.58−4.69 619
7 3.96−4.11 847
8 3.38−3.49 880
9 2.69−2.95 846
10 1.91−2.05 790
11 1.13−1.27 774
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coefficient of determination R2 indices are adopted to evaluate
the estimation performance. They are given as follows:

Figure 4. Comparison of images generated by different models in different intervals: (a) interval 1, (b) interval 3, (c) interval 10, and (d) interval 11.

Figure 5. (a)Original, (b) VA-WGAN reconstruction, (c) error maps for interval 1, (d) original, (e) VA-WGAN reconstruction, and (f) error maps for
interval 11.
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(4)

where f(xi) and yi denote the estimated and real values,
respectively. Nt is the number of test samples.

(5)

where RMSEbef and RMSEaft represent the RMSE values before
and after the improvement, respectively.

(6)

where y̅ is the mean value of yi.

4. RESULTS AND DISCUSSION
4.1. Image Augmentation Results. The samples in

intervals 1, 3, 10, and 11 are used to train each augmentation
method discussed in subsection 3.2.1, respectively. As exhibited
in Figure 4, compared with the original images, the
reconstructed ones using these models seem similar. However,
through comparison, it is found that the images generated by the
VAE are blurrier. This indicates that VAE does not extract flame
features well. Compared to other models, VA-WGAN has a
smaller RMSE, which means that VA-WGAN produces better
reconstruction results.
Moreover, the errors between the original and reconstructed

images of intervals 1 and 11 are visualized, as shown in Figure 5.
The lighter the color in Figure 5c,f, the smaller the
reconstruction errors. Due to the insufficient oxygen supply of
the inner layer during the combustion process, the combustion is
relatively stable. The outer layer, in contrast, is difficult to extract
features from because it burns completely and violently. It can be
observed from Figure 5c,f that the inner layer reconstruction
error is smaller while the outer layer is larger. This is consistent
with the combustion process.
4.2. Estimation Results with Different Generation

Models. To verify the performance of WGCE on oxygen
content estimation under imbalanced flame images, 11 cases of
imbalanced data sets are established. In each case, the number of
samples in the corresponding interval in Table 2 is reduced to
60. Simultaneously, the number of samples in other intervals
remains unchanged. The data set in each case is applied to train
the CNN model.
To prevent the worsening of the estimation performance

caused by the imbalanced data sets, VAE, VAE-GAN, WGAN-
GP, RGAN-GP, and the proposed VA-WGAN are trained by the
samples of minority interval in each case, respectively. After their
training is complete, the corresponding minority interval is
expanded by the generative model. Subsequently, the CNN
model is constructed using the augmented data sets. Taking
intervals 1, 3, 10, and 11 examples, the estimated results are
compared in Table 3. The minority interval is denoted as MI.
From the results in Table 3, the WGCE exhibits the lowest
RMSE and the highest RIP. The closer R2 is to 1, the smaller the
error between the true value and the predicted value is. The R2

values in Table 3 indicate that the proposed WGCE exhibits the
highest accuracy.
For illustration, when the minority interval is 11, the oxygen

content estimated by different models is as shown in Figure 6. It

can be observed that the estimated points for interval 11 using
CNN and VAE CNN models are far from the oxygen
concentration estimation curve. This indicates that data
imbalance can affect the estimated results of the oxygen content.
Moreover, the VAE method did not capture the flame
characteristics well. As a result, the expanded data set failed to
improve the performance of oxygen content estimation. The
estimation points of the VAE-GAN CNN, WGAN-GP CNN,
RGAN-GP CNN, and WGCE models are all clustered around
the true oxygen content curve. It means that they can better
estimate the oxygen content based on imbalanced data sets.
Furthermore, WGCE is the best oxygen concentration
estimation method with an RMSE of 0.1103, as shown in
Table 3.
4.3. Estimation Results with Different Regression

Models. To further validate the superiority of the WGCE
model, PLS and SVR are introduced to compare with the CNN
regression model in WGCE. To create two imbalance
conditions, the number of samples in intervals 1 and 11 was
reduced to 60, respectively. Subsequently, the imbalanced data
sets were used to train the CNN, PLS, and SVR, respectively.
Next, the two minority intervals were expanded with the VA-

WGAN model. After the expansion, two augmented data sets
were obtained. Then, CNN, PLS, and SVR were trained by the

Table 3. Comparison Results of Different Generative Models

MI training data sets method RMSE RIP R2

1 MI:60 CNN 0.1175 0.99626
MI:60+VAE:500 VAE CNN 0.1182 −0.6300 0.99621
MI:60+VAE-
GAN:500

VAE-GAN
CNN

0.1167 0.6811 0.99631

MI:60+WGAN-
GP:500

WGAN-GP
CNN

0.1166 0.7066 0.99631

MI:60+RGAN-
GP:500

RGAN-GP
CNN

0.1157 1.4984 0.99637

MI:60+VA-
WGAN:500

WGCE 0.1153 1.8730 0.99640

3 MI:60 CNN 0.1165 0.99632
MI:60+VAE:500 VAE CNN 0.1155 0.8753 0.99638
MI:60+VAE-
GAN:500

VAE-GAN
CNN

0.1128 3.1923 0.99655

MI:60+WGAN-
GP:500

WGAN-GP
CNN

0.1127 3.3210 0.99656

MI:60+RGAN-
GP:500

RGAN-GP
CNN

0.1132 2.8576 0.99652

MI:60+VA-
WGAN:500

WGCE 0.1085 6.9167 0.99681

10 MI:60 CNN 0.1252 0.99575
MI:60+VAE:500 VAE CNN 0.1239 1.0466 0.99584
MI:60+VAE-
GAN:500

VAE-GAN
CNN

0.1184 5.3927 0.99620

MI:60+WGAN-
GP:500

WGAN-GP
CNN

0.1172 6.4073 0.99628

MI:60+RGAN-
GP:500

RGAN-GP
CNN

0.1122 10.3619 0.99658

MI:60+VA-
WGAN:500

WGCE 0.1111 11.2570 0.99665

11 MI:60 CNN 0.1208 0.99604
MI:60+VAE:500 VAE CNN 0.1200 0.6953 0.99610
MI:60+VAE-
GAN:500

VAE-GAN
CNN

0.1141 5.5459 0.99647

MI:60+WGAN-
GP:500

WGAN-GP
CNN

0.1133 6.1833 0.99652

MI:60+RGAN-
GP:500

RGAN-GP
CNN

0.1110 8.1202 0.99666

MI:60+VA-
WGAN:500

WGCE 0.1103 8.6996 0.99670
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augmented data sets. Detailed comparison results are given in

Table 4. The designed CNN shows the best performance in

estimating the combustion oxygen content among the three

models. Moreover, the proposed WGCE method combined

with CNN and VA-WGAN has the lowest RMSE and the
highest R2.

5. CONCLUSIONS

This work develops a WGCE method for combustion oxygen
content estimation by incorporating a VA-WGAN data
augmentation strategy and CNN regression model. The
designed VA-WGAN generates virtual flame images to augment
the imbalanced training data sets. In such a situation, the CNN
regression model achieves a better oxygen content estimation
than the PLS and SVR methods. Overall, experimental results
show that the WGCE-based oxygen content estimation method
with imbalanced data sets exhibits better performance than
several existing methods. In the future, theWGCEmodel will be
further explored for industrial images with large uncertainties.
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